Summer Scheme of Learning

Year 4

#MathsEveryoneCan
Meet the Characters

Children love to learn with characters and our team within the scheme will be sure to get them talking and reasoning about mathematical concepts and ideas. Who’s your favourite?
<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
<th>Week 8</th>
<th>Week 9</th>
<th>Week 10</th>
<th>Week 11</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td></td>
</tr>
<tr>
<td>Number: Place Value</td>
<td>Number: Addition and Subtraction</td>
<td>Measurement: Length and Perimeter</td>
<td>Number: Multiplication and Division</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consolidation</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Number: Multiplication and Division</td>
<td>Measurement: Area</td>
<td>Number: Fractions</td>
<td>Number: Decimals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consolidation</td>
</tr>
<tr>
<td>Summer</td>
<td></td>
</tr>
</tbody>
</table>
Year 4
Overview

Small Steps

<table>
<thead>
<tr>
<th></th>
<th>Make a whole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Write decimals</td>
</tr>
<tr>
<td></td>
<td>Compare decimals</td>
</tr>
<tr>
<td></td>
<td>Order decimals</td>
</tr>
<tr>
<td></td>
<td>Round decimals</td>
</tr>
<tr>
<td></td>
<td>Halves and quarters</td>
</tr>
</tbody>
</table>

NC Objectives

- Compare numbers with the same number of decimal places up to two decimal places.
- Round decimals with one decimal place to the nearest whole number.
- Recognise and write decimal equivalents to $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{3}{4}$.
- Understand the effect of dividing a one or two digit number by 10 or 100. Identifying the value of the digits in the answer as ones, tenths and hundredths.
Make a Whole

Notes and Guidance

Children make a whole from any number of tenths and hundredths. They use their number bonds to ten and one hundred to support their calculations. Children use pictorial and concrete representations to support their understanding.

Mathematical Talk

How many tenths make one whole?

How many hundredths make one tenth?

How many hundredths make one whole?

If I have __ hundredths, how many more do I need to make one whole?

Varied Fluency

Here is a hundred square.
How many hundredths are shaded?
How many more hundredths do you need to shade so the whole hundred square is shaded?
___ hundredths + ___ hundredths = 1 whole

Here is a rekenrek with 100 beads. Each bead is one hundredth of the whole.
___ hundredths are on the left.
___ hundredths are on the right.
0.___ + 0.___ = 1

Complete the part-whole models.
Which part-whole model does not match the hundred square?

0.03 + 0.07 does not equal one whole so this one does not match.

Three bead strings are 0.84 m long altogether.

Would four bead strings be longer or shorter than a metre?

Longer because each bead string is 28 cm (0.28 m) long, and 0.84 + 0.28 = 1.12 which is greater than 1 metre.

Explain your answer.
Write Decimals

Notes and Guidance

Children use place value counters and a place value grid to make numbers with up to two decimal places. They read and write numbers with decimals and understand the value of each digit. They show their understanding of place value by partitioning numbers with decimals in different ways.

Mathematical Talk

How many ones/tenths/hundredths are in the number? How do we write this as a decimal? Why? What is the value of the ___ in the number _____? When do we need to use zero as a place holder? How can we partition decimal numbers in different ways?

Varied Fluency

What number is represented on the place value grid?

<table>
<thead>
<tr>
<th>Ones</th>
<th>Tenths</th>
<th>Hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

There are ___ ones, ___ tenths and ___ hundredths. The number is ___

Make the numbers on a place value chart and write down the value of the underlined digit.

3.47 2.15 0.6 25.03

Complete the part-whole model in two different ways and write a number sentence to go with each.

0.83

0.83 = ___ + 0.03

0.83 = 0.7 + ___
Write Decimals

Reasoning and Problem Solving

Annie thinks the number shown is 2.2

<table>
<thead>
<tr>
<th>Ones</th>
<th>Tenths</th>
<th>Hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No because Annie has not included the place holder. The number shown is 2.02

Do you agree with Annie? Explain your answer.

Mo is told that this bead string represents one whole.

He thinks that each individual bead represents one tenth.

Do you agree with Mo? Explain your answer.

Match each description to the correct number.

Teddy: 40.46
Amir: 46.2
Rosie: 46.02
Eva: 2.64

Teddy: My number has the same amount of tens as tenths.
Amir: My number has one decimal place.
Rosie: My number has two hundredths.
Eva: My number has six tenths.

46.2 2.64 46.02 40.46
Compare Decimals

Notes and Guidance

Children apply their understanding of place value to compare numbers with decimals with up to two decimal places. They will consolidate and deepen their understanding of 0 as a place holder when making a comparison.

Mathematical Talk

How many tenths does it have?

There are ___ tenths and ___ hundredths.

The number is ___ . ___

___ . ___ is greater/less than ___ . ___ because ...

Varied Fluency

Write the numbers shown and compare using < or >

<table>
<thead>
<tr>
<th>Ones</th>
<th>Tenths</th>
<th>Hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Draw counters in the place value chart to make the statement correct.

<table>
<thead>
<tr>
<th>Ones</th>
<th>Tenths</th>
<th>Hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete.

5.5 0.37 < 0.7

0.14 2.22 > 2.2

1 1.1 > 1.1

3.32 9.9 < 9.9
Compare Decimals

Reasoning and Problem Solving

Use each digit card once to make the statement correct.

\[0 \quad 1 \quad 2 \quad 4 \quad 5 \]

Some possible solutions:

3.12 > 0.45
3.24 > 1.05
3.45 > 1.02
3.01 > 2.45
3.42 > 2.01
3.45 > 0.12
3.02 > 1.45
3.24 > 1.05

Can you find eight different possible solutions?

The greatest:
7.54
The smallest:
0.45
Order Decimals

Notes and Guidance

Children apply their understanding of place value to order numbers with decimals with up to two decimal places. They will consolidate and deepen their understanding of 0 as a place holder, the inequality symbols and language such as ascending and descending.

Mathematical Talk

Which digit can we use to compare these decimals? Will this always be the case?

Do we always use the digit furthest left to compare decimals?

___ . ___ ___ is _______ than ___ . ___ ___ because ...

Varied Fluency

Write down the decimals represented in the place value grid and then place them in ascending order.

<table>
<thead>
<tr>
<th>Ones</th>
<th>Tenths</th>
<th>Hundredths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Place the numbers in descending order.

| 46.2 | 9.64 | 46.02 | 40.46 |

Complete.

1.11 □ 1.12 □ 1.13 □ 0.1__ < 0.1__ < 0.15
3.32 □ 3.23 □ 2.32 □ 1.9__ < 1.9__ < 2.01
4.44 □ 4.34 □ 4.04 □ 6.67 > 6__7 > 6.37
Spot the Mistake

Rosie is ordering some numbers in ascending order:

$$0.09 < 0.99 < 10.01 < 1.35 < 9.09$$

Can you explain her mistake?

Rosie hasn’t considered the place value of the digits in the numbers and has just ordered by comparing individual digits left to right.

Some children have planted sunflowers and have measured their heights.

<table>
<thead>
<tr>
<th>Child</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beth</td>
<td>1.23 m</td>
</tr>
<tr>
<td>Tony</td>
<td>0.95 m</td>
</tr>
<tr>
<td>Rachel</td>
<td>1.02 m</td>
</tr>
<tr>
<td>Kate</td>
<td>1.2 m</td>
</tr>
<tr>
<td>Faye</td>
<td>99 cm</td>
</tr>
<tr>
<td>Emma</td>
<td>0.97 m</td>
</tr>
</tbody>
</table>

Order the children based on the heights of their sunflowers in both ascending and descending order.

Ascending: Tony, Emma, Faye, Rachel, Kate, Beth

Descending: Beth, Kate, Rachel, Faye, Emma, Tony
Notes and Guidance

Children round numbers with 1 decimal place to the nearest whole number. They look at the digit in the tenths column to understand whether to round a number up or not. It is best to avoid the phrase ‘round down’ as this can sometimes lead to misconceptions. Children need to be taught that if a number is exactly half-way, then by convention we round up to the next integer.

Mathematical Talk

Which whole numbers does the decimal lie between?
Which whole number is the decimal closer to on the number line?
Which column do we focus on when rounding to the nearest whole number?
Which digits in the tenths column do not round up to the nearest whole number?
Which digits in the tenths column round up to the nearest whole number?
Round Decimals

Reasoning and Problem Solving

Mo says 0.4 rounded to the nearest whole number is zero.

Whitney says 0.4 rounded to the nearest whole number is one.

Who is correct? Why?

Mo is correct. 0.4 lies between 0 and 1, as there are only four tenths, the number rounds to zero.

A number with one decimal place rounded to the nearest whole number is 45

What could the number be?

The number could be: 44.5, 44.6, 44.7, 44.8, 44.9, 45.1, 45.2, 45.3 or 45.4
Halves and Quarters

Notes and Guidance

Children write $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{3}{4}$ as decimals. They use concrete and pictorial representations to support the conversion. Children use their knowledge of equivalent fractions to write fractions as hundredths and then write the fractions as halves or quarters.

Varied Fluency

Here is a rekenrek with 100 beads.

___ out of 100 beads are red.

___ out of 100 beads are white.

100 are red, and 100 are white.

Half of the beads are red, and half of the beads are white.

$\frac{1}{2} = \frac{50}{100} = \frac{5}{10}$, so $\frac{1}{2}$ is _____ as a decimal.

The beads are split equally on each side of the rekenrek.

There are 4 equal groups.

1 out of 4 equal groups = ___ beads.

1 out of 4 equal groups = ___

$\frac{1}{4} = \frac{25}{100} = _____$

What fraction is represented by 3 out of the 4 groups?

Can you write this as a decimal?

$\frac{3}{4} = \frac{75}{100} = _____$

Mathematical Talk

How would you write your answer as a decimal and a fraction?

Can you represent one quarter using decimal place value counters?

Can you represent three quarters using counters on a place value grid?
Halves and Quarters

Reasoning and Problem Solving

Alex says:

If I know $\frac{1}{2}$ is 0.5 as a decimal, I also know $\frac{3}{6}, \frac{4}{8}$ and $\frac{6}{12}$ are equivalent to 0.5 as a decimal.

Explain Alex’s thinking.

Alex has used her knowledge of equivalent fractions to find other fractions that are equivalent to 0.5

Dexter has made a mistake when converting his fractions to decimals.

\[
\frac{1}{2} = 1.2, \quad \frac{1}{4} = 1.4 \quad \text{and} \quad \frac{3}{4} = 3.4
\]

What mistake has Dexter made?

Dexter has incorrectly placed the numerator in the ones column and the denominator in the tenths column. He should have used equivalent fractions with tenths and or hundredths to convert the fractions to decimals.
Overview

Small Steps

- Pounds and pence
- Ordering money
- Estimating money
- Four operations

NC Objectives

- Estimate, compare and calculate different measures, including money in pounds and pence.
- Solve simple measure and money problems involving fractions and decimals to two decimal places.
Pounds and Pence

Notes and Guidance

Children develop their understanding of pounds and pence. This is the first time they are introduced to decimal notation for money. Once children are confident with this, they can move on to convert between different units of money.

Children can use models, such as the part-whole model, to recognise the total of an amount being partitioned in pounds and pence.

Mathematical Talk

How many pence make a pound?
Why do we write a decimal point between the pounds and pence?
How would we write 343 p using a pound sign?
How can the amounts be partitioned in to pounds and pence?
Is there only one way to complete the part-whole model?
How can these amounts be converted into pounds and pence?

Varied Fluency

How much money is in each purse?

There is ___ pence.
There is ___ pounds.
There is £___ and ___ p
There is £____

Complete the part-whole models to show how many pounds and pence there are.

Convert these amounts to pounds and pence:

357 p
307 p
57 p
370 p
Pounds and Pence

Reasoning and Problem Solving

Some children are converting 1206 p into pounds.

Who is correct?

- Whitney: 1206 p = £12.6
- Rosie: 1206 p = £12.06
- Teddy: 1206 p = £120.6

What have the others done wrong?

Rosie is correct. Whitney has not written the 6 p in the correct column. Teddy has not understood how many pence there are in a pound, therefore his place value is incorrect.

Eva has these coins:

She picks three coins at a time. Decide whether the statements will be always, sometimes or never true.

- She can make a total which ends in 2
- She can make an odd amount.
- She can make an amount greater than £6
- She can make a total which is a multiple of 5 pence

Can you think of your own always, sometimes, never statements?

- Never
- Sometimes e.g. £3.05
- Never – she can only choose three coins so the largest amount she can make is £5
- Always, because every coin is a multiple of 5 pence
Ordering Money

Notes and Guidance

Children use their knowledge of £1 = 100 p to compare amounts. Children begin by ordering amounts represented in the same format e.g. 4,562 p and 4,652 p, or £45.62 and £46.52 and relate this to their place value knowledge. Once children understand this, they look at totals that include mixed pounds and pence and also totals represented in decimal notation. Using real notes and coins could support some children.

Mathematical Talk

What does the digit ___ represent?
What place value column is the digit in? How many pounds/pence is it equivalent to?
How can this help us decide which amount is larger/smaller?
Can we think of an amount which could go in between these amounts?
What does ascending/descending mean?
What's the same? What's different?

Varied Fluency

Two classes save their pennies for a year.

Class A saves 3,589 pennies.
Class B saves 3,859 pennies.

Which class saves the most money?

Write the amounts as pence, then compare using < , > or =

- 6,209 p ___ £60.09
- £0.54 ___ 54 p

Write the amounts as pounds, then compare using < , > or =

- 62 p ___ £6.02
- £5,010 ___ 5,010 p

Order the amounts in ascending order.

- 130 p, £0.32, 132 p, £13.20

Order the amounts in descending order.

- 257 p, £2.50, 2,057 p, £25.07
Ordering Money

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>Teddy, Dora and Jack are buying toys.</th>
<th>Jack could have anything from £5.35 to £5.42. Children may record this as 535 p to 542 p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teddy I have £5.43</td>
<td>Jack I have more money than Dora but less than Teddy. How much money could Jack have? Is there only one answer?</td>
</tr>
<tr>
<td>Dora I have 534p</td>
<td></td>
</tr>
</tbody>
</table>

Amir has these digits cards.

![Digits Cards](Image)

He uses them to fill the frame below:

![Frame](Image)

He makes a total that is more than three pounds but less than six pounds. How many amounts can he make?

Order your amounts in ascending order.

- £3.24, £3.26
- £3.42, £3.46
- £3.62, £3.64
- £4.23, £4.26
- £4.32, £4.36
- £4.62, £4.63
Estimating Money

Notes and Guidance

Children round amounts of money written in decimal notation to the nearest pound. They estimate the total of two amounts and move on to estimating with more than two amounts.

Children discuss underestimating and overestimating and link this to rounding down or up and apply it to real life scenarios such as buying food in the supermarket.

Mathematical Talk

If we have ___, what whole numbers/pounds does this come in between? Where will it go on the number line? Which pound is it nearer to?

What does estimate mean? What does approximately mean? Where would be a sensible place to start labelling the number line?

What will each amount round to? How much will they total altogether?

If you had ___, would you have enough to buy the items?

Varied Fluency

Place the amounts on the number line and round to the nearest pound.

- £3.67
- £3.21
- £3.87
- £7.54
- £7.45
- 701 p

Complete this number line.

Complete the table by rounding each amount and finding the total.

Annie has £15 to spend at the theme park. She rides on the roller coaster which costs £4.34
Then she rides on the big wheel which costs £3.85
Approximately how much money will she have left?
Estimating Money

Reasoning and Problem Solving

Tommy – car
Amira – computer game and rugby ball
Eve – panda

Three children buy toys.
Can you work out who buys what?
Tommy buys a toy which rounds to £5
but gets change from £5
Amir buys two toys which total
approximately £25
Eva’s toy costs 5 p more than the number
the cost rounds to.

If you had £3.05, what combinations could
you buy and what change would you
approximately get?

Various answers

Mo buys some socks and gloves.
He estimates how much
he’ll spend.

£4 + £5 = £9

What could the actual price of the socks
and gloves have been?

Mo has £12
He says he has enough money to buy
three pairs of socks.

Do you agree?
Explain why.

The socks could cost between
£3.50 and £4.49
The gloves could cost between
£4.50 and £5.49

It depends. If the socks costs £3.50
to £4, he will.
If the socks cost £4.01 to £4.49, he
will not.
Four Operations

Notes and Guidance

Children solve simple problems with money, involving all four operations. Children are not expected to formally add with decimals in Year 4 but could explore other methods, such as partitioning and recombinining to add money. They could use prior knowledge of converting, as well as number bonds, to help them. Bar modelling could also be used as a strategy when solving problems.

Mathematical Talk

- How can we label the bar model?
- What other questions could we ask?
- What operation will we use?
- How can we partition pounds and pence to help add two amounts?
- Is there an alternative way to answer this question?

Varied Fluency

- Ron has £4.8. He spends one quarter of his money. How much does he have left? Use the bar model to help.

- A family is going bowling. How much does it cost for 1 child and 1 adult at peak time? How much does it cost for 1 adult and 2 children off peak?

<table>
<thead>
<tr>
<th>Tickets</th>
<th>Peak</th>
<th>Off Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>£8</td>
<td>£6</td>
</tr>
<tr>
<td>Child</td>
<td>£4.20</td>
<td>£5.30</td>
</tr>
</tbody>
</table>

- Amir buys some clothes in a half price sale. What would the full price of each item be? How much would he have paid altogether if they were full price? How much does he pay in the sale? How much does he save?
 - Jumper £14
 - Scarf £7
 - Hat £2.50
 - T-shirt £6.50
Four Operations

Reasoning and Problem Solving

A class has £100 to spend on books.

Book Prices
- Hardback = £8
- Paperback = £4

How many books could they buy for £100?
How many different ways can this be done?

Dexter buys a teddy bear for £6.00, a board game for £4.00, a CD for £5.50 and a box of chocolates for £2.50. He has some discount vouchers. He can either get £10.00 off or pay half price for his items. Which voucher would save him more? Explain your thinking.

<table>
<thead>
<tr>
<th>Receipt</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandwich</td>
<td>£2.75</td>
</tr>
<tr>
<td>Orange juice</td>
<td>90 p</td>
</tr>
<tr>
<td>Crisps</td>
<td>60 p</td>
</tr>
<tr>
<td>Banana</td>
<td>30 p</td>
</tr>
<tr>
<td>TOTAL</td>
<td>£4.55</td>
</tr>
</tbody>
</table>

Here is Dora’s receipt.

Total = £18
18 – 10 = 8
\[\frac{1}{2} \text{ of } 18 = 9 \]
18 – 9 = 9

The £10 voucher would save more.

Use the information to complete the receipt:
- The sandwich costs £2.15 more than the crisps.
- The orange juice is the same price as the crisps and banana together.
- The banana is half the price of the crisps.
Summer - Block 3
Time
Year 4
Year 4 | Summer Term | Week 5 – Measurement: Time

Overview

Small Steps

- Hours, minutes and seconds
- Years, months, weeks and days
- Analogue to digital – 12 hour
- Analogue to digital – 24 hour

NC Objectives

Read, write and convert time between analogue and digital 12- and 24-hour clocks.

Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.
Hours, Minutes & Seconds

Notes and Guidance

Children recap the number of minutes in an hour and seconds in a minute from Year 3.

They use this knowledge, along with their knowledge of multiplication and division to convert between different units of time.

Mathematical Talk

What activity might last one hour/minute/second?
How many minutes are there in an hour?
How can we use a clock face to check? How could we count the minutes?
How many seconds are there in one minute? What could we use to check?
How many minutes in ____ hours? How many seconds in ____ minutes?

Varied Fluency

Sort the activities under the headings depending on the approximate length of time they take to complete.

<table>
<thead>
<tr>
<th>One hour</th>
<th>One minute</th>
<th>One second</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clap</td>
<td>Run around the playground</td>
<td>Blink</td>
</tr>
<tr>
<td>Swimming lesson</td>
<td>PE lesson</td>
<td>Tie your shoe laces</td>
</tr>
</tbody>
</table>

One hour = ____ minutes One minute = ____ seconds.
Two hours = ____ minutes Three minutes = ____ seconds.
Half an hour = ____ minutes ____ minutes = 240 seconds.

Josh reads a chapter of his book in 5 minutes and 28 seconds. Tom reads a chapter of his book in 300 seconds. Who reads their chapter the quickest?
Hours, Minutes & Seconds

Reasoning and Problem Solving

Jack takes part in a sponsored silence.

He says,

If I am silent for five hours at 10p per minute, I will raise £50

Do you agree with Jack? Explain why you agree or disagree.

Jack is incorrect. There are 60 minutes in an hour so
60 \times 10p = 600p or £6
£6 \times 5 = £30

Dora says,

To convert hours to minutes, I multiply the number of hours by 60

Is she correct? Can you explain why?

Dora is correct. For example
1 hour = 60 minutes
1 \times 60 = 60
2 hours = 120 minutes
2 \times 60 = 120

Five friends run a race. Their times are shown in the table.

<table>
<thead>
<tr>
<th>Name</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eva</td>
<td>114 seconds</td>
</tr>
<tr>
<td>Dexter</td>
<td>199 seconds</td>
</tr>
<tr>
<td>Teddy</td>
<td>100 seconds</td>
</tr>
<tr>
<td>Whitney</td>
<td>202 seconds</td>
</tr>
<tr>
<td>Ron</td>
<td>119 seconds</td>
</tr>
</tbody>
</table>

Which child finished the race the closest to two minutes?

What was the difference between the fastest time and the slowest time?

Give your answer in minutes and seconds.

Ron was the closest to two minutes, as he is one second quicker than 2 minutes (120 seconds).

Fastest time 100 seconds, slowest time 202 seconds.

The difference between the fastest and slowest time is 1 minute and 42 seconds.
Years, Months, Weeks & Days

Notes and Guidance

Children recap the concept of a year, month, week and day from Year 3.

They use this knowledge, along with their knowledge of addition, subtraction, multiplication and division to convert between the different units of time.

Mathematical Talk

How many days are there in a week? How many days are there in each month?
How many weeks in a year?
How many days are there in ____ weeks? What calculation do we need to do to convert days to weeks/weeks to days?
How many months/weeks/days are there in _____years?

Varied Fluency

Use a calendar to help you complete the sentences.

There are ___ months in a year.
There are ___ days in February.
___ months have 30 days, and ___ months have 31 days.
There are ___ days in a year and ___ days in a leap year.

Complete the table.

<table>
<thead>
<tr>
<th>Number of days</th>
<th>Number of weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Sally is 7 years and 2 months old.
Macey is 85 months old.
Who is the oldest?
Explain your answer.
Years, Months, Weeks & Days

Reasoning and Problem Solving

Amir, Rosie and Jack describe when their birthdays are.

Amir says, My birthday is in exactly two weeks.

Amir – 2 weeks is equal to 14 days so his birthday is 22nd June.

Rosie says, My birthday is in exactly 2 months.

Rosie – 8th August

Jack says, My birthday is in 35 days.

Jack – there are another 22 days left in June plus 13 in July, so his birthday is 13th July.

Use the clues to work out when their birthdays are if today is the 8th June.

Always, sometimes, never?

There are 730 days in two years.

Sometimes – if both of the years are not leap years this is true. If one is a leap year then there will be 731 days in the 2 years.

True or false?

- 3 days > 72 hours.
- $2 \frac{1}{2}$ years = 29 months
- 11 weeks 4 days < 10 weeks 14 days

False – $2 \frac{1}{2}$ years is greater than 29 months

True
Analogue to Digital – 12 hour

Notes and Guidance

Children convert between analogue and digital times using a format up to 12 hours. They use a.m. and p.m. to distinguish between times in the morning and afternoon. They understand that how many minutes past the hour determines the digital time.

It is important for children to recognise that digital time need to be written in 4-digit format. For example, 09:30 a.m. not 9:30

Mathematical Talk

What time is the analogue clock showing?
How many minutes is it past the hour? How can you count the minutes efficiently?
How do we record each time in digital format?
What does a.m./p.m. mean?
Can you order the activities starting with the earliest?
What would the time look like on Alfie’s digital watch when he left home?

Varied Fluency

The time is _______ past 10
This can also be written as ____ minutes past 10
The digital time is ____ : ____

Write each of these times in the digital format.

Record the time of each activity in digital format.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netball</td>
<td>p.m.</td>
</tr>
<tr>
<td>Football</td>
<td>a.m.</td>
</tr>
<tr>
<td>Rock climbing</td>
<td>p.m.</td>
</tr>
<tr>
<td>Roller disco</td>
<td>a.m.</td>
</tr>
</tbody>
</table>

Alfie looks at his digital watch and sees this time. What could he be doing at this time?

01:00 p.m.
Analogue to Digital – 12 hour

Reasoning and Problem Solving

Annie converts the analogue time to digital format. Here is her answer.

Annie has recorded the minutes past the hour first instead of the hour. The time should be 02:22.

22:02

Explain what Annie has done wrong. What should the digital time be?

12:21

On a 12 hour digital clock, how many times will the time be read the same forwards and backwards?

Children can work systematically to work this out. For example, 12:21, 01:10, 02:20, 03:30 etc.

Jack arrives at the train station at the time shown in the morning.

Which trains could he catch?

<table>
<thead>
<tr>
<th>Destination</th>
<th>Departs</th>
</tr>
</thead>
<tbody>
<tr>
<td>York</td>
<td>07:10 a.m.</td>
</tr>
<tr>
<td>New Pudsey</td>
<td>09:25 a.m.</td>
</tr>
<tr>
<td>Bramley</td>
<td>09:42 a.m.</td>
</tr>
<tr>
<td>Leeds</td>
<td>10:03 a.m.</td>
</tr>
</tbody>
</table>

Jack could catch the train to Bramley or Leeds.

He would have to wait 7 minutes to go to Bramley and 28 minutes to go to Leeds.
Analogue to Digital – 24 hour

Notes and Guidance

Children now move on to convert between analogue and digital times using a 24 hour clock.

They use 12 and 24 hour digital clocks, and a number line, to explore what happens after midday.

Mathematical Talk

What do you notice about the time 1 o’clock in the afternoon on a 24 hour digital clock?
How will the time be shown for 3 o’clock in the morning/afternoon? How do you know?
What time is the analogue clock showing?
Why is it important to know if it is a.m. or p.m.?
What time does she leave school on a 24 digital clock?

Varied Fluency

Explore an interactive 12 and 24 hour digital clock with the children. Compare what happens when the time reaches 1 o’clock in the afternoon. Move the 24 hour clock on to 2 o’clock. Plot the times above a 0-24 number line.
What do you notice?
Record these times using 24 hour digital format.
4 pm 8 pm 11 pm

Match the analogue and digital times.

<table>
<thead>
<tr>
<th>a.m.</th>
<th>p.m.</th>
<th>p.m.</th>
<th>a.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 : 10</td>
<td>07 : 10</td>
<td>00 : 45</td>
<td>21 : 20</td>
</tr>
</tbody>
</table>

Sally leaves school at the time shown. She arrives home 1 hour later. What will the time be on a 24 hour digital clock?
Analogue to Digital – 24 hour

Reasoning and Problem Solving

Three children are meeting in the park.

Rosie says,
We are meeting at 14:10.

Teddy says,
We are meeting at 02:10 p.m.

Eva says,
We are meeting at ten to two.

Will all the children meet at the same time?
Explain your answer.

Annie has recorded the minutes past the hour first instead of the hour. The time should be 02:22 a.m.

Jack says,
To change any time after midday from 12 hours to 24 hours digital time just add 12 to the hours

Will this always be true? Are there any examples where this isn’t the case?

Can you match the time dominoes together so that the touching times are the same?

<table>
<thead>
<tr>
<th>20:55 Ten to two</th>
<th>13:50 Five to ten</th>
<th>09:55 Ten to three</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:05 Ten past 4</td>
<td>02:50 Five past 3</td>
<td>16:10 Five to nine</td>
</tr>
</tbody>
</table>

Can you create your own version for your partner?

Sometimes true
You need to add 12 to the hour, but not if it is 12 in the hours e.g. 12:04 p.m.

Children may find more than one way to solve this.
Overview

Small Steps

- Interpret charts
- Comparison, sum & difference
- Introducing line graphs
- Line graphs

NC Objectives

Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs.

Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.
Interpret Charts

Notes and Guidance

Children revisit how to use bar charts, pictograms and tables to interpret and present discrete data. They decide which scale will be the most appropriate when drawing their own bar charts. Children gather their own data using tally charts and then present the information in a bar chart. Questions about the data they have gathered should also be explored so the focus is on interpreting rather than drawing.

Mathematical Talk

What are the different ways to present data?
What do you notice about the different axes?
What do you notice about the scale of the bar chart?
What other way could you present the data shown in the bar chart?
What else does the data tell us?
What is the same and what is different about the way in which the data is presented?
What scale will you use for your own bar chart? Why?

Varied Fluency

Complete the table using the information in the bar chart.

What is the most/least popular way to get to school?
How many children walk to school?

Produce your own table, bar chart or pictogram showing how the children in your class travel to school.

Represent the data in each table as a bar chart.

<table>
<thead>
<tr>
<th>Transport</th>
<th>Number of children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td></td>
</tr>
<tr>
<td>Walk</td>
<td></td>
</tr>
<tr>
<td>Bus</td>
<td></td>
</tr>
<tr>
<td>Bicycle</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Team</th>
<th>Number of house points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sycamore</td>
<td></td>
</tr>
<tr>
<td>Oak</td>
<td></td>
</tr>
<tr>
<td>Beech</td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day</th>
<th>Number of tickets sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>55</td>
</tr>
<tr>
<td>Tuesday</td>
<td>30</td>
</tr>
<tr>
<td>Wednesday</td>
<td>45</td>
</tr>
<tr>
<td>Thursday</td>
<td>75</td>
</tr>
<tr>
<td>Friday</td>
<td>85</td>
</tr>
</tbody>
</table>
Interpret Charts

Reasoning and Problem Solving

Halifax City Football Club sold the following number of season tickets:
- Male adults – 6,382
- Female adults – 5,850
- Boys – 3,209
- Girls – 5,057

Would you use a bar chart, table or pictogram to represent this data? Explain why.

Possible answer: I would represent the data in a table because it would be difficult to show the exact numbers accurately in a pictogram or bar chart.

Alex wants to use a pictogram to represent the favourite drinks of everyone in her class.

It is not a good idea, because it would be difficult to show amounts which are not multiples of 5.

I will use this image 🍹 to represent 5 children.

Explain why this is not a good idea.

Here is some information about the number of tickets sold for a concert.

<table>
<thead>
<tr>
<th>Day</th>
<th>Number of tickets sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>56</td>
</tr>
<tr>
<td>Tuesday</td>
<td>30</td>
</tr>
<tr>
<td>Wednesday</td>
<td>45</td>
</tr>
<tr>
<td>Thursday</td>
<td>75</td>
</tr>
<tr>
<td>Friday</td>
<td>85</td>
</tr>
</tbody>
</table>

Jack starts to create a bar chart to represent the number of concert tickets sold during the week.

Possible response: I would tell Jack to use a different scale for his bar chart because the numbers in the table are quite large. The scale could go up in 5s because the numbers are all multiples of 5. Jack needs to record the title and he needs to label the axes.

What advice would you give Jack about the scale he has chosen?
What would be a better scale to use?
Is there anything else missing from the bar chart?
Children solve comparison, sum and difference problems using discrete data with a range of scales. They use addition and subtraction to answer questions accurately and ask their own questions about the data in pictograms, bar charts and tables. Although examples of data are given, children should have the opportunity to ask and answer questions relating to data they have collected themselves.

Mathematical Talk

- What does a full circle represent in the pictogram?
- What does a half/quarter/three quarters of the circle represent?
- What other questions could we ask about the pictogram?
- What other questions could we ask about the table?
- What data could we collect as a class?
- What questions could we ask about the data?

<table>
<thead>
<tr>
<th>Team</th>
<th>Number of house points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sycamore</td>
<td></td>
</tr>
<tr>
<td>Oak</td>
<td></td>
</tr>
<tr>
<td>Beech</td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td></td>
</tr>
</tbody>
</table>

How many more points does the Sycamore team have than the Ash team?

How many points do Beech and Oak teams have altogether?

How many more points do Ash need to be equal to Oak?

<table>
<thead>
<tr>
<th>Activity</th>
<th>Number of votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bowling</td>
<td>9</td>
</tr>
<tr>
<td>Cinema</td>
<td>10</td>
</tr>
<tr>
<td>Swimming</td>
<td>7</td>
</tr>
<tr>
<td>Ice-skating</td>
<td>14</td>
</tr>
</tbody>
</table>

How many people voted in total? $\frac{1}{4}$ of the votes were for _______. 7 more people voted for ________ than ________.

As a class, decide on some data that you would like to collect, for example: favourite books, films, food. Collect and record the data in a table. Choose a pictogram or a bar chart to represent your data, giving reasons for your choices. What questions can you ask about the data?
Rosie has read the bar chart incorrectly. 15 people chose vanilla, 19 people chose chocolate, 10 chose strawberry and 12 chose mint. That means 56 people were asked altogether.

Rosie says,

We asked 54 people altogether.

Can you spot Rosie’s mistake? How many people were asked altogether?

<table>
<thead>
<tr>
<th>Attraction</th>
<th>Number of visitors on Saturday</th>
<th>Number of visitors on Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal World Zoo</td>
<td>1,282</td>
<td>2,564</td>
</tr>
<tr>
<td>Maltings Castle</td>
<td>2,045</td>
<td>1,820</td>
</tr>
<tr>
<td>Primrose Park</td>
<td>1,952</td>
<td>1,325</td>
</tr>
<tr>
<td>Film Land Cinema</td>
<td>2,054</td>
<td>1,595</td>
</tr>
</tbody>
</table>

True or false?

- The same number of people visited Maltings Castle as Film Land Cinema on Saturday.
- Double the number of people visited Animal World Zoo on Sunday than Saturday.
- The least popular attraction of the weekend was Primrose Park.

- False The Film Land Cinema had 9 more visitors than Maltings Castle.
- True 1,282 doubled is 2,564.
- True Animal World Zoo - 3,846
 Maltings Castle - 3,865
 Primrose Park - 3,277
 Film Land Cinema - 3,649
Introducing Line Graphs

Notes and Guidance

Children are introduced to line graphs in the context of time. They use their knowledge of scales to read a time graph accurately and create their own graphs to represent continuous data. It is important that children understand that continuous data can be measured (for example, time, temperature and height) but as values are changing all the time, the values we read off between actual measurements are only estimates.

Mathematical Talk

How is the line graph different to a bar chart?

Which is the x and y axis? What do they represent?

How would you estimate the temperature at 9:30 a.m.?

How would you estimate the time it was when the temperature was 7 degrees?

Varied Fluency

- The graph shows the temperature in the playground during a morning in April.
 - The temperature at 9 a.m. is ______ degrees.
 - The warmest time of the morning is ________.

- Class 4 grew a plant. They measured the height of the plant every week for 6 weeks. The table shows the height of the plant each week.

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 cm</td>
<td>7 cm</td>
<td>9 cm</td>
<td>12 cm</td>
<td>14 cm</td>
<td>17 cm</td>
</tr>
</tbody>
</table>

Create a line graph to represent this information. What scale would you use on the x and y axes? Between which two weeks did the plant reach a height of 10 cm?
Introducing Line Graphs

Reasoning and Problem Solving

Jack launched a toy rocket into the sky. After 5 seconds the rocket fell to the ground. Which graph shows this? Explain how you know.

Graph A
The height of the rocket increases then decreases quickly again, returning to a height of 0 at 5 seconds.

Example story:
A bird flew up from the ground. It continued to fly upwards for 5 seconds then flew at the same height for another 3 seconds.

Make up your own story for the other graph.

Tommy created a line graph to show the number of dogs walking in the park one afternoon.

Tommy says,
At half past one there are 1.5 dogs in the park.

Why is Tommy incorrect?

What would be a better way of presenting this data?

Tommy is incorrect because you cannot have 1.5 dogs.

A better way of presenting this data would be using a bar chart, pictogram or table because the data is discrete.
Line Graphs

Notes and Guidance

Building from the last step, children continue to solve comparison, sum and difference problems using continuous data with a range of scales. They use addition and subtraction to answer questions accurately and ask their own questions about the data in line graphs. Although examples of data are given, children need to have the opportunity to ask and answer questions relating to data they have collected themselves.

Mathematical Talk

Is this discrete or continuous data? How do you know?

What do you notice about the scale of the graph?

How could you make sure you read the graph accurately?

What other questions could you ask about the graph?

How many different ways can you fill in the stem sentences?

Varied Fluency

The graph shows the growth of a plant over 6 months.
• How tall was the plant when it was measured in May?
• In what month did the plant first reach 50 cm?
• How many centimetres did the plant grow between March and July?
• What was the difference between the height of the plant in February and the height of the plant in April?

The graph shows the weight of a puppy as it grows.
When the puppy is ____ months old the weight is ____kg
Between month ____ and month ____ the puppy increased by ____ kg
Eva measured the temperature of a cup of tea every 30 minutes for 2 hours. The graph shows Eva’s results.

I do not agree with Eva. At 9 a.m. the temperature was 80 degrees and at 9.45 a.m. the temperature was 50 degrees, so it had dropped 30 degrees not 20 degrees.

Eva says,

In the first 45 minutes the temperature of the tea had dropped by 20 degrees.

Do you agree with Eva? Explain why.

Example story:
Mo drove 20 miles in his lorry. At half past 9 he had a 15 minute rest then drove for another 30 miles until he reached his destination at 10:30 a.m.
Properties of Shape

Year 4
Overview

Small Steps

- Identify angles
- Compare and order angles
- Triangles
- Quadrilaterals
- Lines of symmetry
- Complete a symmetric figure

NC Objectives

- Identify acute and obtuse angles and compare and order angles up to two right angles by size.
- Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes.
- Identify lines of symmetry in 2-D shapes presented in different orientations.
- Complete a simple symmetric figure with respect to a specific line of symmetry.
Identify Angles

Notes and Guidance

Children develop their understanding of obtuse and acute angles by comparing with a right angle. They use an angle tester to check whether angles are larger or smaller than a right angle.

Children learn that an acute angle is more than 0 degrees and less than 90 degrees, a right angle is exactly 90 degrees and an obtuse angle is more than 90 degrees but less than 180 degrees.

Mathematical Talk

How many degrees are there in a right angle?

Draw an acute/obtuse angle.

Estimate the size of the angle.

Varied Fluency

A right angle is ____ degrees.
Acute angles are ____ than a right angle.
Obtuse angles are ____ than a right angle.

Sort the angles into acute, obtuse and right angles.

Label the angles. O for obtuse, A for acute and R for right angle.
Identify Angles

Reasoning and Problem Solving

All are correct. Children may reason about how Whitney has come to her answer and discuss that the angle is about half a right angle. Half of 90 degrees is 45 degrees.

Is the angle acute, obtuse or a right angle? Can you explain why?

Find the sum of the largest acute angle and the smallest obtuse angle in this list:

12° 98° 87° 179° 90° 5°

The angle is a right angle. Children may use an angle tester to demonstrate it, or children may extend the line to show that it is a quarter turn which is the same as a right angle.

87° + 98° = 185°
Compare & Order Angles

Notes and Guidance

Children compare and order angles in ascending and descending order.

They use an angle tester to continue to help them to decide if angles are acute or obtuse.

Children identify and order angles in different representations including in shapes and on a grid.

Mathematical Talk

How can you use an angle tester to help you order the angles?

How many obtuse/acute/right angles are there in the diagrams?

Compare the angles to a right angle. Does it help you to start to order them?

Rotate the angles so one of the lines is horizontal. Does this help you to compare them more efficiently?

Varied Fluency

Circle the largest angle in each shape or diagram.

Order the angles from largest to smallest.

Can you draw a larger obtuse angle? Can you draw a smaller acute angle?

Order the angles in the shape from smallest to largest. Complete the sentences.

Angle ____ is smaller than angle ____.
Angle ____ is larger than angle ____.
Compare & Order Angles

Reasoning and Problem Solving

Angle A and Angle B are the same size. Ron has mixed up the lengths of the lines with the size of the angles.

Angle B is bigger than Angle A because it has longer sides.

Do you agree with Ron? Explain your thinking.

Here are five angles. There are two pairs of identically sized angles and one odd one out. Which angle is the odd one out? Explain your reason.

Angle e is the odd one out.

Angle b and c are both right angles.

Angle a and d are both half of a right angle or 45 degrees.

Angle e is an obtuse angle.
Year 4 | Summer Term | Week 8 to 10 – Geometry: Properties of Shapes

Triangles

Notes and Guidance

Teachers might start this small step by recapping the definition of a polygon. An activity might be to sort shapes into examples and non-examples of polygons. Children will classify triangles for the first time using the names ‘isosceles’, ‘scalene’ and ‘equilateral’. Children will use rulers to measure the sides in order to classify them correctly. Children will compare the similarities and differences between triangles and use these to help them identify, sort and draw.

Mathematical Talk

What is a polygon? What isn’t a polygon?
What are the names of the different types of triangles?
What are the properties of an isosceles triangle?
What are the properties of a scalene triangle?
What are the properties of an equilateral triangle?
Which types of triangle can also be right-angled?
How are the triangles different?
Do any of the sides need to be the same length?

Varied Fluency

Label each of these triangles: isosceles, scalene or equilateral.

Are any of these triangles also right-angled?

Look at these triangles. What is the same and what is different?

Using a ruler, draw:
- An isosceles triangle
- A scalene triangle
Here is a square. Inside the square is an equilateral triangle. The perimeter of the square is 60 cm. Find the perimeter of the triangle.

The perimeter of the triangle is 45 cm.

Eva: If I use 6 straws to make a triangle, I can only make an equilateral triangle.

Investigate whether Eva is correct.

Draw two more sides to create:
- An equilateral triangle
- A scalene triangle
- An isosceles triangle

Which is the hardest to draw?

Eva is correct. 2, 2, 2 is the only possible construction. 1, 1, 4 and 1, 2, 3 are not possible.

Children will draw a range of triangles. Get them to use a ruler to check their answers. Equilateral will be difficult to draw accurately because the angle between the first two sides drawn, must be 60°.
Quadrilaterals

Notes and Guidance

Children name quadrilaterals including a square, rectangle, rhombus, parallelogram and trapezium. They describe their properties and highlight the similarities and differences between different quadrilaterals. Children draw quadrilaterals accurately using knowledge of their properties. Teachers could use a Frayer Model with the children to explore the concept of quadrilaterals further.

Mathematical Talk

What's the same about the quadrilaterals?

What's different about the quadrilaterals?

Why is a square a special type of rectangle?

Why is a rhombus a special type of parallelogram?

Varied Fluency

- Label the quadrilaterals using the word bank.
 - trapezium
 - square
 - rhombus
 - rectangle
 - parallelogram

- Use the criteria to describe the shapes.
 - four sides
 - 2 pairs of parallel sides
 - four equal sides
 - polygon
 - 1 pair of parallel sides
 - 4 right angles

Which criteria can be used more than once?
Which shapes share the same criteria?

- Draw and label:
 - a rhombus.
 - a parallelogram.
 - 3 different trapeziums
Quadrilaterals

Reasoning and Problem Solving

Complete each of the boxes in the table with a different quadrilateral.

<table>
<thead>
<tr>
<th>4 equal sides</th>
<th>2 pairs of equal sides</th>
<th>1 pair of parallel sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 right angles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No right angles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Children can discuss if there are any shapes that can go in the top right corner. Some children may justify it could be a square or a rectangle however these have 2 pairs of parallel sides.

You will need:

Some 4 centimetre straws
Some 6 centimetre straws

How many different quadrilaterals can you make using the straws?

Calculate the perimeter of each shape.

Square: Four 4 cm - perimeter is 16 cm or four 6 cm - perimeter is 24 cm
Rectangle: Two 4 cm and two 6 cm - perimeter is 20 cm
Rhombus: Four 4 cm - perimeter is 16 cm
Four 6 cm straws - perimeter is 24 cm
Parallelogram: Two 4 cm and two 6 cm - perimeter is 20 cm
Trapezium: Three 4 cm and one 6 cm - perimeter is 18 cm
Lines of Symmetry

Notes and Guidance

Children find and identify lines of symmetry within 2-D shapes. Children explore symmetry in shapes of different sizes and orientations. To help find lines of symmetry children may use mirrors and tracing paper.

The key aspect of symmetry can be taught through paper folding activities. It is important for children to understand that a shape may be symmetrical, but if the pattern on the shape isn’t symmetrical, then the diagram isn’t symmetrical.

Mathematical Talk

Explain what you understand by the term ‘symmetrical’. Can you give any real-life examples?

How can you tell if something is symmetrical?

Are lines of symmetry always vertical?

Does the orientation of the shape affect the lines of symmetry?

What equipment could you use to help you find and identify lines of symmetry?

What would the rest of the shape look like?

Varied Fluency

Using folding, find the lines of symmetry in these shapes.

Sort the shapes into the table.

<table>
<thead>
<tr>
<th>1 line of symmetry</th>
<th>More than 1 line of symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 4 sides</td>
<td></td>
</tr>
<tr>
<td>More than 4 sides</td>
<td></td>
</tr>
</tbody>
</table>

Draw the lines of symmetry in these shapes (you could use folding to help you).

What do you notice?
Lines of Symmetry

Reasoning and Problem Solving

How many symmetrical shapes can you make by colouring in a maximum of 6 squares?

There are a variety of options. Some examples include:

Jack

A triangle has 1 line of symmetry unless you change the orientation.

Is Jack correct? Prove it.

Always, Sometimes, Never.

A four-sided shape has four lines of symmetry.

Jack is incorrect. Changing the orientation does not change the lines of symmetry. Children should prove this by drawing shapes in different orientations and identifying the same number of lines of symmetry.

Sometimes, provided the shape is a square.
Symmetric Figures

Notes and Guidance

Children use their knowledge of symmetry to complete 2-D shapes and patterns.

Children could use squared paper, mirrors or tracing paper to help them accurately complete figures.

Mathematical Talk

What will the rest of the shape look like?

How can you check?

How can you use the squares to help you?

Does each side need to be the same or different?

Which lines need to be extended?

Varied Fluency

- Colour the squares to make the patterns symmetrical.

- Complete the shapes according to the line of symmetry.

- Reflect the shapes in the mirror line.
Symmetric Figures

Reasoning and Problem Solving

Do you agree with Dora? Convince me.

When given half of a symmetrical shape I know the original shape will have double the amount of sides.

Dora

Dora is sometimes correct. This depends on where the mirror line is. Encourage children to draw examples of times where Dora is correct, and to draw examples of times when Dora isn’t correct.

How many different symmetrical shapes can you create using the given sides?

Children will find a variety of shapes. For example:
Position and Direction

Year 4
Overview
Small Steps

- Describe position
- Draw on a grid
- Move on a grid
- Describe a movement on a grid

NC Objectives

Describe positions on a 2-D grid as coordinates in the first quadrant. Plot specified points and draw sides to complete a given polygon.

Describe movements between positions as translations of a given unit to the left/right and up/down.
Describe Position

Notes and Guidance

Children are introduced to coordinates for the first time and they describe positions in the first quadrant.

They read, write and use pairs of coordinates. Children need to be taught the order in which to read the axes, \(x\)-axis first, then \(y\)-axis next. They become familiar with notation within brackets.

Mathematical Talk

Which is the \(x\)-axis?
Which is the \(y\)-axis?
In which order do we read the axes?
Does it matter in which order we read the axes?
How do we know where to mark on the point?
What are the coordinates for ______?
Where would \((__, __)\) be?

Varied Fluency

Create a large grid using chalk or masking tape. Give the children coordinates to stand at. Encourage the children to move along the axis in the order they read them.

Write the coordinates for the points shown.

\[\times (__, __) \quad \times (__, __) \]

\[\times (__, __) \quad \times (__, __) \]

Write out the coordinates that spell your name.
Describe Position

Reasoning and Problem Solving

Teddy is correct. Rosie has read the y-axis before the x-axis.

The point is plotted at (7,3)

Teddy

The point is plotted at (3,7)

Rosie

Who is correct? What mistake has one of the children made?

Which clue matches which coordinate?

Clue 1 - B
My x coordinate is half of my y coordinate.

Clue 2 - A
My y coordinate is less than my x coordinate.

Clue 3 - C
Both my coordinates are prime numbers.
Children develop their understanding of coordinates by plotting given points on a 2-D grid.

Teachers should be aware that children need to accurately plot points on the grid lines (not between them).

They read, write and use pairs of coordinates.

Do we plot our point on the line, or next to the line?
How could we use a ruler to help plot points?
In which order do we read and plot the coordinates?
Does it matter which way we plot the numbers on the axis?
What are the coordinates of _____?
Where would (__, __) be?
Can you show _____ on the grid?
Draw on a Grid

Reasoning and Problem Solving

What shapes could be made by plotting three more points?

The children could make a range of quadrilaterals dependent on where they plot the points. If children plot some of the points in a line they could make a triangle.

When you are plotting a point on a grid it does not matter whether you go up or across first as long as you do one number on each axis.

Do you agree with Amir? Convince me.

Amir is incorrect. The x-axis must be plotted before the y-axis. Children prove this by plotting a pair of coordinates both ways and showing the difference.

Always, Sometimes, Never.

The number of points is equal to the number of vertices when they are joined together.

Sometimes. If points are plotted in a straight line they will not create a vertex.
Move on a Grid

Notes and Guidance

Children move shapes and points on a coordinate grid following specific directions using language such as: left/right and up/down.
Teachers might want to use a small ‘object’ (e.g. a small cube) to demonstrate the idea of moving a point on a grid.
They apply their understanding of coordinates when translating by starting with the left/right translation followed by up/down.

Mathematical Talk

Can you describe the translation?
Can you describe the translation in reverse?
Why do we go left and right first when describing translations?
What are the coordinates for point _____?
Write a translation for D for your partner to complete.
What do you notice about the new and original points?
What is the same and what is different about the new and original points?

Varied Fluency

Place a small cube on the grid at coordinate (1, 1).
Move your cube 1 up. Move your cube 1 down. What do you notice?
Now move your cube 3 to the right. Move your cube 3 to the left. What do you notice?

Translate A 6 right and 3 down.
Record the coordinates before (__, __) and after (__, __)
Translate B and C 4 left and 3 up.
Record the coordinates before (__, __) and after (__, __)

Translate the rectangle 2 left and 3 up.
Write down the coordinates of each vertex of the rectangle before and after the translation.
Move on a Grid

Reasoning and Problem Solving

There could be a range of answers, for example:

Translate 1 left and 1 right

Translate 1 left, 1 right, 2 up and 2 down

Ron translates the point (2, 3), but realises that it has returned to the same position.

What translation did he do?

Is there more than one answer?

Here is a game to play in pairs:

Each player needs:

1 small cube
One barrier (e.g. a mini whiteboard)

The first player places a cube on their grid. They describe the original position and perform a translation.

The second player listens to the instructions and performs the same translation.

They check to see if they have placed their cube at the same coordinate.

Swap roles and repeat several times.

The teacher could make this more competitive (points awarded when correct).
Describe Movement

Notes and Guidance

Children describe the movement of shapes and points on a coordinate grid using specific language such as: left/right and up/down. Sentence stems might be useful. They start with the left/right translation followed by up/down.

Teachers should check that children understand the idea of ‘corresponding vertices’ when describing translation of shapes (e.g. vertex A on the object translates to vertex A on the image).

Mathematical Talk

Can you describe the translation?

Can you describe the translation in reverse?

Can you complete the following stem sentence:

Shape A is translated ___ left/right and ____ up/down to shape B

Varied Fluency

Describe the translation from:

△ to ✗ ♥ to ✴

△ to ♥ ✴ to ✗

Describe the translation from:
A to B B to C C to D D to A

Plot two new points and describe the translations from A to your new points.

Describe the translation of shape A to shape B.

Describe the translation of shape B to shape A.

What do you notice?
Describe Movement

Reasoning and Problem Solving

Tommy has described the translation from A to B as 3 right and 4 up.

Tommy has counted one move to the right when he has not moved anywhere yet. He has done the same for one move up when he has not moved up one space yet.

Can you explain his mistake?

Possible answers include:
(0,1) (1,0)
(0,2) (2,0)
(0,3) (3,0)
(0,5) (5,0)
(1,1) (3,3)
(0,0) (4,4)

Can you plot other pairs of points where to move between them, you travel the same to left or right as you travel up or down?

What do you notice about the coordinates of these points?