Summer Scheme of Learning

Year 2

#MathsEveryoneCan
Contents

Meet the Characters ... 3
Yearly Overview .. 4
Summer Blocks
 Block 1 – Geometry: Position and Direction 5
 Block 2 – Your own problem solving activities
 Block 3 – Time ... 15
 Block 4 – Mass, Capacity and Temperature 29
Notes and Guidance

Meet the Characters
Children love to learn with characters and our team within the scheme will be sure to get them talking and reasoning about mathematical concepts and ideas. Who’s your favourite?

Teddy Rosie Mo Eva Alex
Jack Whitney Amir Dora Tommy
Dexter Ron Annie
<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
<th>Week 8</th>
<th>Week 9</th>
<th>Week 10</th>
<th>Week 11</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: Place Value</td>
<td>Number: Addition and Subtraction</td>
<td></td>
<td></td>
<td></td>
<td>Measurement: Money</td>
<td>Number: Multiplication and Division</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: Multiplication and Division</td>
<td>Statistics</td>
<td></td>
<td></td>
<td></td>
<td>Number: Fractions</td>
<td>Measurement: Length and Height</td>
<td>Consolidation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td></td>
</tr>
</tbody>
</table>
Overview

Small Steps

- Describing movement
- Describing turns
- Describing movement and turns
- Making patterns with shapes

NC Objectives

Use mathematical vocabulary to describe position, direction and movement including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise).

Order and arrange combinations of mathematical objects in patterns and sequences.
Describing Movement

Notes and Guidance

Children use language ‘forwards’, ‘backwards’, ‘up’, ‘down’, ‘left’ and ‘right’ to describe movement in a straight line.

Children will practically follow and give directions with a partner before writing directions for routes and recording routes on 2-D grids. Teachers need to discuss the direction objects are facing, in order to correctly complete left and right movements.

Mathematical Talk

How far have you/has your partner moved?
In what direction have you/has your partner moved?

What direction are we facing in at the start? Why is this important?

Can you describe the movements made by ____?

How could we record these movements?

Varied Fluency

Using the words forwards, backwards, left and right, give your partner some instructions to follow when moving around the classroom/playground.

Complete the stem sentences to describe the movements made.

The 🐝 has moved 1 square ______.
The 🐝 has moved ___ squares ______.
The ____ has moved 2 squares up.
The ____ has moved ___ squares down.

Record these movements on the grid using arrows.
The 🐸 moves 1 square right.
The 🦗 moves 3 squares forward.
The 🦗 moves 1 square down.
The 🦗 moves 1 square up.
Describing Movement

Reasoning and Problem Solving

Amir is incorrect. The sheep has moved 2 squares to the left because of the way it was facing to begin with.

Is Amir correct? Explain your reasoning.

How many different routes can you write for the bee to get to the hive?

Use the words forwards, backwards, left and right.

Possible answers: Forward 3, Right 1.
Right 1, Forward 3.
Right 2, Forward 3, Left 1.
Right 1, Forward 3.
Right 2, Forward 2, Left 1, Forward 1.

There are more routes for the children to find.
Describing Turns

Notes and Guidance

It is important to encourage the children to take into consideration which direction the object/person is facing to begin with.

Mathematical Talk

What direction was the turn?

Describe the turn that the number shapes have made?

Could there be more than one answer? Why?

Varied Fluency

Turn a figure.

Ask your partner to describe the turn using the language, ‘full turn’, ‘half turn’, ‘quarter turn’, ‘three-quarter turn’, ‘clockwise’ and ‘anticlockwise’.

Match the turn to the description.

Describe how the triangle has turned each time.

The triangle has made a _____ turn ______.

The triangle has made a _____ turn ______.

The triangle has made a _____ turn ______.
Describing Turns

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>Look at the number shape below:</th>
<th>Possible answers:</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td>No turn</td>
</tr>
<tr>
<td>How could the number shape have turned?</td>
<td>Quarter/half/</td>
</tr>
<tr>
<td></td>
<td>three-quarter or full turn clockwise.</td>
</tr>
<tr>
<td></td>
<td>Quarter/half/</td>
</tr>
<tr>
<td></td>
<td>three-quarter or full turn anticlockwise.</td>
</tr>
</tbody>
</table>

Describe all possibilities.

Always, Sometimes, Never

If two objects turn in different directions they will not be facing the same way.

Sometimes. It depends on how far the objects are turned – quarter, half, three quarters or full.
Describing Movement & Turns

Notes and Guidance

Children use their knowledge of movement and turns to describe and record directions.

They need to be aware of the direction the object is facing before it is turned.

Children may explore movement and turns further using ICT or during P.E.

Mathematical Talk

Which direction is ____ facing to begin with? Why is this important?
Is ____ moving or just changing direction? How do you know?

How can we record the directions given?

Are there any other routes that could be taken?

Varied Fluency

- Describe the route Dennis takes to school.

- Draw the route to show these directions.
 - Forward 1 square. Turn left.
 - Forward 1 square, quarter turn anti-clockwise.
 - Forward 1 square. Make a quarter turn clockwise.
 - Forward 1 square. Make a three quarter turn anti-clockwise. Forward 3

- Write directions for Dennis to get to each place on the map.
Describing Movement & Turns

Reasoning and Problem Solving

How many different routes can you find to get from start to finish. Use the words ‘forwards’, ‘backwards’, ‘clockwise’, ‘anti-clockwise’ and ‘quarter turn’.

Children will find a range of routes. For example:

- Turn a quarter anticlockwise.
- Forward 1
- Turn a quarter clockwise.
- Forward 1
- Turn a quarter clockwise.
- Forward 3
- Turn a quarter anticlockwise.
- Forward 1

Is Whitney correct?

Possible answer: Whitney is correct.

A quarter turn clockwise is the same as a three-quarter turn anticlockwise.

Convince me.

Children may use objects/small people to show their reasoning.
Making Patterns with Shapes

Notes and Guidance

Children build on previous knowledge of patterns and repeating patterns from Year 1.

They now describe and create patterns that involve direction and turns.

Children use the language ‘clockwise’, ‘anti-clockwise’, ‘quarter’, ‘half’ and ‘three quarters’ to describe patterns.

Mathematical Talk

What is happening in the pattern?

What would the next shape look like?

How would you describe its position?

How can we work out the missing shape?

Varied Fluency

- Continue these patterns by adding the next 3 shapes.
- Fill in the missing shapes to complete the patterns.
- Describe the turn for each pattern.
Making Patterns with Shapes

Reasoning and Problem Solving

How many different patterns can you create using this shape?

Possible answers:

Spot the mistake in each pattern. Explain why they are incorrect.

The rule is turn the shape a quarter turn.

Eva

The rule is turn the shape three quarters.

Rosie

Who is correct?

Eva and Rosie could both be correct as no direction is given. Eva may be turning clockwise and Rosie anticlockwise.

The 4th shape should be pointing right.

Or the 8th shape should be pointing left.

The 5th shape has not made half a turn.
Overview

Small Steps

- O’clock and half past
- Quarter past and quarter to
- Telling time to 5 minutes
- Hours and days
- Find durations of time
- Compare durations of time

NC Objectives

Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times. Know the number of minutes in an hour and the number of hours in a day.

Compare and sequence intervals of time.
O'clock and Half Past

Notes and Guidance

Children recap the Year one objective of telling the time to the hour and half past the hour.

Children should be given the opportunity to create times using individual clocks with moveable hands.

Children read and write times from clocks.

Mathematical Talk

What do the numbers represent on the clock face?
Which is the hour hand? Which is the minute hand?

Where will the hour hand be at ____?
Where will the minute hand be at ____?
What do you notice about the minute hand at half past?

Can you show me ____?
O'clock and Half Past

Reasoning and Problem Solving

Who is telling the time correctly?

Alex is correct. Dora has confused the minute hand with the hour hand. Amir has not noticed that the hour hand has not gone past 3 yet.

The time is half past 6
Dora

The time is half past 3
Amir

The time is half past 2
Alex

Can you spot the mistakes they’ve made?

It is half past 11 so the hour hand should be on the 11

Is Alex correct?
Explain your reasoning.

Alex is incorrect. If the time is half past 11 the hour hand should be halfway between the 11 and 12

Oh no! The minute hand has fallen off the classroom clock!

Lunchtime is at 12:00
Have the children missed their lunchtime?

Unfortunately, the children have missed their lunch. The hour hand is halfway between 12 and 1 so the time is 12:30
Quarter Past & Quarter To

Notes and Guidance
Children read and draw the times ‘quarter to’ and ‘quarter past’. They use their knowledge of fractions and turns to identify quarter past and quarter to. Children should recognise that the hour hand moves along with the minute hand. Therefore when the time is quarter past the hour, the hour hand will be just past the hour and when the time is quarter to, the hour hand will be just before the hour.

Mathematical Talk
Where are the hands pointing to? Can we divide the clock face into four equal parts? Can we link this to fractions? If the minute hand is pointing at 3, how many minutes have passed the hour? If the minute hand is pointing at 9, how many minutes until the next hour? Show me quarter past/to...

Varied Fluency

- Look at the clocks.
 - Discuss how the minute hand has travelled. Identify when the time is quarter past the hour and quarter to the hour. Give the children individual clocks with moveable hands and ask them to make quarter to/past times.

- Match the clocks to the correct time.
 - Quarter to four
 - Quarter past four
 - Quarter to three
 - Quarter past three

- Complete the table.

 | The minute hand is pointing to | The minute hand is pointing to three |
 | The hour hand is just after | The hour hand is just after six |
 | The time is quarter | The time is quarter past six |
 | seven |

 | The minute hand is pointing to |
 | The hour hand is just before |
 | The time is quarter |
 | two |

 | The minute hand is pointing to nine |
 | The hour hand is just |
 | The time is quarter to |
 | twelve |
Quarter Past & Quarter To

Reasoning and Problem Solving

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Son: Quarter past is always later than quarter to. Me: It depends on the hour of the times given. For example: quarter to 12 is later than quarter past 11. If the hour remains the same than Teddy is correct.</td>
<td>Situation: The train to Blackpool leaves at quarter past and quarter to every hour. Me: Make a list of the times of the trains Oliver can catch if he gets to the train station between 2 o’clock and half past 4. Oliver could catch the following trains: Quarter past 2, Quarter to 3, Quarter past 3, Quarter to 4, Quarter past 4.</td>
<td></td>
</tr>
<tr>
<td>Do you agree with Teddy? Explain why.</td>
<td>How many quarters of an hour are between 7 o’clock and 9 o’clock. Explain how you found the answer.</td>
<td>There are 8 quarters of an hour between 7 o’clock and 9 o’clock.</td>
</tr>
</tbody>
</table>
Telling Time to 5 Minutes

Notes and Guidance

Children read and show analogue time to 5-minute intervals. Children should be confident at counting from 0 to 60 in steps of 5 so they can then apply this to counting around the clock in fives and use this method to work out what time is shown.

Children need to recognise that once the minute hand gets past 6 the time is described as ‘to’ the next hour, rather than ‘past’ the hour.

Mathematical Talk

How many minutes are there between each pair of numbers on a clock?
How many different ways can you count round the clock?
Where will the minute hand be at _____? Where will the hour hand be at _____?
How do we know whether it is a ‘past’ or a ‘to’ time?
Can you show _____ past/to _____?

Varied Fluency

Using a demonstration clock, ask the children to count round in minutes. When the minute-hand is pointing to a number, record how many minutes have passed the hour in a table. What do they notice? Will this pattern continue?

<table>
<thead>
<tr>
<th>Minute hand pointing to</th>
<th>Minutes past the hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

Show the children times to 5-minute intervals on a large clock. Ask the children to identify what time is being shown. Give the children individual clocks with moveable hands. Ask the children to make times to 5 minute intervals.

Match the times to the correct clock.

- 20 past 6
- 5 to 9
- 10 to 2
- 20 to 11
- 25 to 3
- 10 past 1
Telling Time to 5 Minutes

Reasoning and Problem Solving

Alex is correct. Dora has said the hour before not the next hour. Amir has confused his minute and hour hands.

Who is correct? Explain your answer.

Rosie is incorrect. Four 5 minutes are the same as 20 minutes.

Do you agree with Rosie? Explain why.

Sophia starts her Maths questions at 10 past 11

Each question takes her 5 minutes to complete.
She completes 7 questions.

What time does Sophia finish her Maths questions?
Explain how you found the answer.

Sophia finishes her Maths questions at quarter to 12

Children may use a clock to count round seven lots of 5 minutes.

Children may do $5 \times 7 = 35$ and count 35 minutes round the clock.
Hours and Days

Notes and Guidance

Children learn that there are 24 hours in a day and 60 minutes in an hour.
Children use clocks to convert minutes to hours and minutes.
Children should be encouraged to use their knowledge of counting in fives to help them convert.

Mathematical Talk

How many hours are there in a full day?
How many minutes are in an hour and a half? How could we calculate this?
Could we count in half an hour? How many half an hours are in one hour?
How many half an hours will there be in two hours?

Varied Fluency

Starting from midnight show every hour on the clocks for a full day.

There are [blank] hours in a day.

Using the clock, show how many minutes there are in 1 hour.
1 hour = ____ minutes
How many minutes would there be in 2 hours?

Match the bars to the times.

- 60 minutes
Hours and Days

Reasoning and Problem Solving

Tommy

There must be 12 hours in a day because we start from midnight and go up to 12 o'clock then start again from 1.

Do you agree with Tommy? Explain why.

I disagree because there are 12 hours am and 12 hours pm therefore equaling 24 hours in a day.

Rosie

If you add three hours onto the current time, the amount of minutes to/past the hour do not change.

Do you agree with Rosie? Prove it.

I agree. The hour hand will change but the minutes will stay the same.

Eva

The day starts at 12 o'clock and ends at 12 o'clock.

Here are Eva's calculations for working out how many hours there are in a day.

<table>
<thead>
<tr>
<th>12</th>
<th>6</th>
<th>12</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>5</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Eva has counted 12 o'clock three times.
The final twelve on her list is the start of the next day.

I counted them up, and there are 25 hours in a day.

What mistake has Eva made?
Find Durations of Time

Notes and Guidance

Children identify the start and end time of an event. They use these times to work out how long an event lasted. Children should understand this is the duration of an event. Children use individual clocks and number lines to help them work out the duration of an event. They can count in steps of 5 minutes to help them.

Mathematical Talk

What is the start time? What is the end time?
How can we show this on the clock?
How long did the event last?

How did you work out the duration?
Are there any other methods for working out duration?

Varied Fluency

How much time has passed from the start to end time?

Start	Duration	End

Complete the table.

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Time passed</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>___ minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>___ minutes</td>
</tr>
<tr>
<td>5 past 2</td>
<td>5 to 3</td>
<td></td>
<td>___ minutes</td>
</tr>
</tbody>
</table>

Jack leaves school at quarter past 3
He arrives home at five to 4
How long was Iqbal’s journey?
Find Durations of Time

Reasoning and Problem Solving

Oh no! The hour hand has fallen off the class clock!

The film could have lasted 40 minutes, but children may reason that most films last more than an hour, so it is more likely to be an hour and 40 minutes or two hours and 40 minutes.

The clock shows the start and end time of a film.

How long do you think the film lasted?

Aimee is planning her birthday. She wants to plan something to do from 9am to 5pm.

Here are the things she wants to do:
- Visit the zoo (3 hours)
- Go to Pizza Palace (1 hour and a half)
- Have breakfast (half an hour)
- Play party games (1 hour)
- Watch a film (2 hours)

Create a timetable for Aimee’s day. Compare it to your friends – is it the same?

There are 8 hours in Aimee’s day so children could create different combinations for Aimee’s day.
Compare Durations of Time

Notes and Guidance

Children compare times using ‘longer’ and ‘shorter’. They order times from longest to shortest and vice versa.
Children then compare durations of time taken by particular events.
They could explore ways to work out durations of time most efficiently, including using empty number lines and using their knowledge that there are 60 minutes in an hour.

Mathematical Talk

Which is longer 2 minutes or 1 hour?
How can you order the times?
How many minutes does each TV show last?
How can we count the minutes efficiently?
How much longer is than?
How can we efficiently work out the length of time each person works?

Varied Fluency

Circle the longest time.
1 hour 40 minutes Half an hour
55 minutes Three quarters of an hour 35 minutes

Can you order the times from longest to shortest?

Use the table to complete the sentences.

<table>
<thead>
<tr>
<th>TV Show</th>
<th>Starts</th>
<th>Ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop World</td>
<td>3 o’clock</td>
<td>Twenty to 4</td>
</tr>
<tr>
<td>Animal Patrol</td>
<td>Half past 6</td>
<td>Five to 7</td>
</tr>
<tr>
<td>Super Cars</td>
<td>Quarter past 8</td>
<td>Five past 9</td>
</tr>
</tbody>
</table>

____________ is the shortest TV show.
____________ is longer than ___________ and ___________

Joe works from half past 10 until 3 o’ clock.
Emma works from 9 o’ clock until half past 12
Who works the longest amount of time?
Compare Durations of Time

Reasoning and Problem Solving

The clocks show the start and end time of the film Super Dog.

The film Crazy Cat starts at quarter past 1 and ends at quarter to 3

Teddy says, Super Dog must be the longest film, because it ends the latest.

Do you agree with Teddy? Explain why.

I do not agree with Teddy, because both films last exactly the same length of time – 1 hour and 30 minutes.

Rosie has an hour for her lunch break. If she takes 10 minutes to eat her lunch, does she have enough time to complete all of the playground activities?

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skipping</td>
<td>7 minutes</td>
</tr>
<tr>
<td>Ball skills</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Treasure hunt</td>
<td>21 minutes</td>
</tr>
<tr>
<td>Trim trail</td>
<td>19 minutes</td>
</tr>
</tbody>
</table>

How do you know?

Rosie doesn't have time to complete all of the activities. Completing all of the activities would take 57 minutes. If she spends 10 minutes eating her lunch, she would only have 50 minutes left.
Overview

Small Steps

- Compare mass
- Measure mass in grams
- Measure mass in kilograms
- Compare volume
- Millilitres
- Litres
- Temperature

NC Objectives

Choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); temperature (°C); capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels.

Compare and order lengths, mass, volume/capacity and record the results using >, < and =.
Compare Mass

Notes and Guidance

Children recap on Year 1 learning by comparing the mass of different objects. They will initially use balance scales to compare the mass of two or more objects.

Children compare mass using < and > and order objects based on their masses.

Mathematical Talk

Look at the scale, which side is lower?
What does this tell us about the objects?

Which object is heavier? Which object is lighter?

Can you hold the objects and predict which is heavier?
Is a largest object always the heaviest?

Varied Fluency

Using the words ‘more’ and ‘less’ and the > or < symbols, describe the mass.

The lettuce weighs _____ than the pineapple.

Choose three objects. Use the balance scales to order them from heaviest to lightest?

The _____ is heavier than the _____ but lighter than the _____.
The _____ is lighter than the _____ but heavier than the _____.

Complete the sentences:
4 bananas weigh the same as ___ doughnuts.
2 bananas weigh the same as ___ doughnuts.

Can you write sentences using ‘more’ or ‘less’ using the image?
Compare Mass

Reasoning and Problem Solving

Eva

Do you agree? Explain why.

Tommy

Apples weigh more than bananas.

Two doughnuts weigh the same as two bananas.

3 bananas weigh the same as two apples, so Tommy is correct - an apple must weigh more than a banana. 1 banana weighs the same as 2 doughnuts so Eva is incorrect.

One pear weighs 10 cubes. How many cubes will balance one pineapple? Explain how you know.

Always, sometimes or never true?

The larger the box, the heavier it is.

1 pineapple weighs 20 cubes.

Sometimes. Children can explore this using different sized boxes.
Measure Mass (g)

Notes and Guidance

In Year 2, the children use standard units of mass (grams) for the first time. They continue to use balance scales before moving on to use standard weighing scales. Children apply their counting in 2s, 5s and 10s skills to reading scales accurately. They should see a variety of scales with different intervals. Give children the opportunity to feel the mass of gram weights so they can use this for estimation.

Mathematical Talk

When the balance scales are level, what does this tell us? What symbol could we use? (=)
What is the mass of the _____?
What would two ____ ____ weigh?
How could you tell is something was lighter or heavier than 10g?
How much heavier is the _____ than the _____? How could you work it out?

Varied Fluency

- Use gram weights to measure the mass of objects using a balance scale.
 The ____ weighs ______ grams.

- Use scales to record the mass of objects in grams.

- Order the items from heaviest to lightest.
Measure Mass (g)

Reasoning and Problem Solving

The red beanbag weighs more because it weighs the same as two green beanbags.

Which is heavier, the red or the green beanbag? Explain why.

The tin of beans weighs 25 g and the pineapple weighs 30 g.

The ... g.

The ... g.
Measure Mass (kg)

Notes and Guidance
Children use their knowledge of measuring mass in grams to start to measure mass in kilograms. They apply counting in 2s, 5s and 10s to measure on different scales. Give children the opportunity to feel the mass of kilogram weights and real life objects that weigh 1 kg so they can use this to estimate.

Mathematical Talk
Which is heavier, one gram or one kilogram? What else do you think we might measure in kilograms?

How much do you think that you weigh? Would you measure this in grams or kilograms? Shall we estimate and then weigh ourselves?

Can you make up some different questions about the suitcases? What words can you use to compare?

Varied Fluency

Find the mass of the sweets and the beans.

The sweets weigh ____kg

The beans weigh ____g.

Read the scales to find the mass of each.

The bag weighs ____ kg.

The person weighs ____ kg.

Sophie's family are going on holiday. Compare the mass of their suitcases.

Sophie’s suitcase is _______ than Dad's suitcase

Mum’s suitcase weighs ____ kg more than Dad's suitcase.
Measure Mass (kg)

Reasoning and Problem Solving

What is the mass of each barrel?

- Barrel A weighs 8 kg
- Barrel B weighs 16 kg
- Barrel C weighs 4 kg

Double the mass of A

Half the mass of A

What is the difference between the mass of B and C?

The brown parcel weighs twice as much as the blue parcel.
The green parcel weighs 2 kg more than 30 kg
The blue parcel weighs 12 kg less than the green parcel.

Draw an arrow to show where each parcel would be on the scale.

The green parcel weighs 32 kg
The blue parcel weighs 20 kg
The brown parcel weighs 40 kg
Compare Volume

Notes and Guidance

Children compare the volume of containers using <, > and =. They build on their understanding of the difference between capacity and volume from Year 1. Capacity is the amount a container can hold. Volume is the amount it is actually holding.

Children use the language ‘quarter’, ‘half’ and ‘three-quarters full’ to describe and compare volume. Make sure children have the opportunity to practically investigate volume and capacity.

Mathematical Talk

Which container has the largest/smallest capacity? How do you know? Can we order them from largest to smallest?

Which container has the most or least liquid in?

How many mugs does it take to fill the bottle? Is this more or less than the pot? Can we find the difference? Does the tallest container always hold the most?

Varied Fluency

Show three different containers. Which container has the largest capacity? Using water or rice, make each container: one quarter full, half full, three-quarters full.

Complete the sentences using the words ‘less’, ‘more’ or equal.

Container A has ________ than container B.

Container C has ________ than container B.

Container A has ________ than container C but ________ than container B.

Complete the sentences:

The bottle can fill _____ mugs.

The pot can fill _____ mugs.

Use other containers to investigate how many mugs of rice they take to fill.
Compare Volume

Reasoning and Problem Solving

Whitney had two full bottles of juice. She poured some juice into two glasses.

A

Which glass has the most juice in?
Which has the least juice in?
Explain how you know.

B

Glass A has the least juice in and Glass B has more juice in. Bottle A has more juice left over which means it has less juice poured out.

Choose a selection of different sized containers. Decide how you will measure how much liquid each container can hold. Order your containers from smallest to largest. Compare the containers using <, > or =

The pot holds 40 cups of water.

How many cups does the pot hold?
Millilitres

Notes and Guidance

Children are introduced to standard units of millilitres (ml) for the first time.

They should be provided with a selection of different measuring cylinders and jugs in order to practice measuring in millilitres. They should be encouraged to estimate how many ml unlabeled containers will hold and then use measuring cylinders or jugs to check.

Mathematical Talk

Which container has the largest/smallest capacity? Can we order them from largest to smallest?

Look at the scale on my cylinder, what do you notice? Is this the same for this cylinder?

If we pour the liquid from this jar/glass into the cylinder, how much does each container hold?

Varied Fluency

Use a variety of different containers with ml clearly labelled e.g. measuring spoon, water bottle, liquid soap, vinegar etc. Introduce that liquid can be measured in millilitres. Discuss whether 5 ml is a large or small amount. Show 5 ml using a medicine spoon. Look at the containers estimate then identify how many ml each container holds.

Draw the level on the scale to show the capacity of each container.

Use different containers e.g. mug, bowl, pan, tea cup. Fill them with water or rice. Pour them into a measuring cylinder and measure the amount of liquid or rice in the measuring cylinder.
Millilitres

Reasoning and Problem Solving

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Container A holds 12 teaspoons.</td>
</tr>
<tr>
<td></td>
<td>Container B holds 16 teaspoons.</td>
</tr>
<tr>
<td></td>
<td>How many spoonfuls of liquid are there in each container?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Container A holds 5 ml of liquid.

Estimate the amount of water in the container.

- The water is between 40 ml and 50 ml.
- It is approximately 45 ml.

Explain why you have given your answer.
Litres

Notes and Guidance

Children are introduced to litres (l) as a standard unit for the first time.

Children recognise the difference between measuring in millilitres and litres and when it is more efficient to use litres to measure liquid rather than millilitres. They should be encouraged to estimate volumes and then check by measuring.

Mathematical Talk

Which is larger, 1 millilitre or 1 litre? How do you know?

Would you measure _______ in litres or millilitres? Why?

How many litres of water do you drink a day?

Show the children a litre container. How many litres of water do you think it would take to fill _______?

Varied Fluency

- Provide a variety of different containers with litres clearly labelled e.g. cola bottle, paint bottle, milk etc.

 Introduce litres and discuss how these are the same but different to millilitres. Identify how many litres fill each container.

- Show how much liquid is in each cylinder after you:
 - Pour 3 litres of water into the cylinder.
 - Leave 1 litre of cola in the bottle.
 - Pour half of the juice into the cylinder.

- Use different containers e.g. bucket, large pan etc. Estimate and then measure the capacity of each one.
Litres

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>Mo puts 4 litres of water in bucket A. He then pours 3 litres from bucket A into bucket B.</th>
<th>There is less in bucket A because there will be 1 litre in A and 3 litres in B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Which sentence is correct?</td>
<td>3 bowls each have more than 20 l of water in but less than 50 l</td>
</tr>
<tr>
<td>• There is more in bucket A.</td>
<td>The green bowl has 5 l more than the red bowl.</td>
</tr>
<tr>
<td>• There is less in bucket A.</td>
<td>The blue bowl has 10 l more than the green bowl.</td>
</tr>
<tr>
<td>• There are equal amounts in each bucket.</td>
<td>How much could each bowl have in?</td>
</tr>
<tr>
<td>Explain why.</td>
<td>The red bowl could have between 20 l and 35 l</td>
</tr>
<tr>
<td></td>
<td>The green bowl could have between 25 l and 40 l</td>
</tr>
<tr>
<td></td>
<td>The blue bowl could have between 35 l and 50 l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eva wants to measure 2 litres of water into a tub. She only has a 5 litre and a 3 litre container.</th>
<th>Eva could fill her 5 litre container and then empty 3 litres into the 3l container. She will be left with 2 litres.</th>
</tr>
</thead>
<tbody>
<tr>
<td>How can she use both containers to measure 2 litres?</td>
<td>5l - 3l = 2l</td>
</tr>
</tbody>
</table>
Temperature

Notes and Guidance

Children are introduced to temperature, thermometers and the units ‘degrees Centigrade’, written °C for the first time. They learn that the temperature is higher when it is warmer.

They apply their counting in 2s, 5s and 10s skills when reading different scales on thermometers.

Mathematical Talk

What unit can we use to measure temperature?
What is the scale going up in? How do you know?
If the temperature increases what happens to the number on the scale?
If the temperature decreases what happens to the number on the scale?
Can we compare temperatures using vocabulary such as increased, decreased, warmer, colder and difference?

Varied Fluency

Take temperatures around the school and complete the following stem sentences:
The temperature in the classroom is ________.
The classroom is _________ than the playground.
The difference in temperature between the _________ and the _________ is ___ degrees Celsius.

Complete the thermometers to show the temperatures.

16 °C 35 °C 70 °C 9 °C

Compare the temperatures using <, > or =
Temperature

Reasoning and Problem Solving

Mollie took the temperature at 12 p.m. and again at 5 p.m.

There was a difference of 7°C

What could the temperatures be?

Children may give any temperatures that have a difference of 7

Some children may realise that it is usually cooler in the evening and therefore make sure there 12pm temperature is always warmer than the 5pm temperature.

What is the same and what is different about the thermometers/temperatures?

Both thermometers are showing 30°C

The scale on the first thermometer counts up in 5°C. The scale on the second thermometer counts up in 10°C

The second thermometer will be able to record higher temperatures.