White Rose Maths

Summer - Block 1

Multiplication & Division

Year 1
Overview

Small Steps

- Count in 10s
- Make equal groups
- Add equal groups
- Make arrays
- Make doubles
- Make equal groups - grouping
- Make equal groups - sharing

NC Objectives

- Count in multiples of twos, fives and tens.
- Solve one step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
Children count in groups of tens for the first time. Previously they have counted in 2s and 5s. They use pictures, bead strings and number lines to support their counting.

Counting in 10s on a hundred square will also support children to see the similarities between the numbers when we count in tens.

How many birds/flowers are there in total?
How can we use our number lines to help us count them?
Will _____ appear on our number line? Why?
What is the same about all the numbers we say when we are counting in tens?

How many birds are there altogether?
There are ____ birds in each tree.
There are ____ trees.
There are ____ birds altogether.

How many flowers are there altogether?
There are ____ flowers in each bunch.
There are ____ bunches.
There are ____ flowers altogether.

Use a 0-100 bead string to count in tens.
Can we count forwards and backwards in tens?
Can we count in tens on a number track as well?
How does this match counting on a bead string?
In a shop, grapes come in bunches of 10. Max wants to buy forty grapes. Are there enough grapes?

Yes there are enough grapes. There are fifty grapes and Max only needs forty.

Jemima is counting in 10s on part of a hundred square.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Jemima will say 10, 20, 30, 40 and 50. All the numbers have the same ones digit (0). They all have different tens digit. The tens digit goes up by 1 for each new number she says.

She starts at 10.

Shade in all the numbers Jemima will say.

What is the same about the numbers she says?

What is different about the numbers?
Children begin by using stories which link to pictures and concrete manipulatives to explore making equal groups and write statements such as ‘there are ___ groups of ___.’ They will recognise and explain how they know when they are equal or not. Children see equal groups that are arranged differently so they understand that the groups look different but can still be equal in number. At this stage children do not explore multiplication formally.

Mathematical Talk

How do I know that the groups are equal? What does equal mean?

How many pencils are there in each pot? How can I complete the sentence to describe the groups?

What’s the same and what’s different?

Are Josh’s groups equal or unequal? How can we make them equal?

Varied Fluency

Are the groups equal or unequal? Write a label for each.

Are there ___ groups of ___ pencils.

Are there ___ groups of ___ flowers.

Josh is drawing equal groups of 3

Complete his drawing.
Dora and Rosie are making hay bundles.

Who has made equal groups?

- **Dora** has made equal groups because she has 3 groups of 3 hay bundles.
- **Rosie** has two unequal groups.

Explain how you know.

Possible answer: Dora has made equal groups because she has 3 groups of 3 hay bundles. Rosie has two unequal groups.

Use concrete materials or pictures to complete the questions.

- **Alex** has 4 equal groups. Show me what Alex’s groups could look like.
 - Whitney has 3 unequal groups. Show me what Whitney’s groups could look like.

Children will show 4 groups where there are the same amount in each group for Alex and 3 groups that are unequal for Whitney.

Encourage children to do this in more than one way.
Children use equal groups to find a total. They focus on counting equal groups of 2, 5 and 10 and explore this within 50.
Children could begin by linking this to real life, for example animal legs, wheels, flowers in vases etc.
Stem sentences alongside number sentences can help children link the calculation with the situation. Ensure children have the opportunity to say their sentences aloud.

How many apples are there in each bag?
Do all of the bags have an equal number of apples?
How many equal groups can you see?
How can we represent this with counters/cubes/on a number line/in a number sentence etc?
What other equipment could you use to represent your pattern? What’s the same? What’s different?
Which is more, 3 groups of 10 or 4 groups of 5? Prove why.

How many wheels altogether?
How many fingers altogether?
How many apples are there? Complete the sentences.
How many fish are there?
Can you show this using ten frames?

2 + 2 + 2 + 2 + 2 =
5 + 5 + 5 =
5 + 5 + 5 + 5 =
There are ___ apples.
There are ___ groups of ___ apples which is equal to ___
___+ ___+ ___ =___
There are ___ fish.
Eva and Whitney are making equal groups of bread rolls.

Possible answer: I agree with both.

They are counting in groups of 10 so they need one more group of 10.

Who do you agree with? Explain why.

Eva: We need one more group to make 40.

Whitney: We need 10 more rolls to make 40.

Rosie and Eva have equal groups of either 2, 5 or 10.

Each of their totals is less than 40.

Rosie has 5 equal groups.

Eva has 3 equal groups.

Eva’s total is more than Rosie’s total.

What could they be counting in?

Use equipment to help you.

Possible answers:

Rosie: 2 + 2 + 2 + 2 + 2 = 10
Eva: 5 + 5 + 5 = 15

Rosie: 5 + 5 + 5 + 5 + 5 = 25
Eva: 10 + 10 + 10 = 30

Rosie: 2 + 2 + 2 + 2 + 2 = 10
Eva: 10 + 10 + 10 = 30
Children begin to make arrays by making equal groups and building them up in columns or rows.

They use a range of concrete and pictorial representations alongside sentence stems to support their understanding.

Children also explore arrays built incorrectly and recognise the importance of columns and rows.

Mathematical Talk

How many equal groups do I have? How many in each group? Can I represent my apples with counters?

What is the difference between columns and rows? How many counters in each row? How many counters in each column?

How can I record my array with a number sentence?

Varied Fluency

Build an array with counters to represent the apples. Complete the sentences.

There are ____ apples in each row. There are ____ rows.

____ + ____ + ____ = ____

There are ____ apples altogether.

Complete the table.

<table>
<thead>
<tr>
<th>Array</th>
<th>Description - columns</th>
<th>Description - rows</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 cookies in each column</td>
<td>2 rows</td>
<td>2 + 2 + 2 + 2 = 10 (5 + 5 = 10)</td>
</tr>
<tr>
<td></td>
<td>3 columns, 2 donuts in each column</td>
<td>5 rows, 3 donuts in each row</td>
<td>3 + 3 + 3 + 3 + 3 = 15</td>
</tr>
<tr>
<td></td>
<td>4 columns, 3 fish in each column</td>
<td>2 rows, 5 fish in each row</td>
<td>4 + 4 + 4 + 4 = 16</td>
</tr>
<tr>
<td></td>
<td>3 columns, 5 cupcakes in each column</td>
<td>5 rows, 3 cupcakes in each row</td>
<td>3 + 3 + 3 + 3 + 3 = 15</td>
</tr>
</tbody>
</table>
Amir and Whitney are making arrays.

Who has made a mistake? Explain why.

Possible answer: Whitney has made a mistake because her array is not in columns. There are an unequal amount of squares in each row.

Teddy and Alex are writing number sentences to describe the array.

Who do you agree with? Explain why.

Possible answer: They are both right. Teddy has counted the columns. Alex has counted the rows.

Eva begins to make an array with 40 counters. She has finished her first row and her first column. Complete her array.

Write two different number sentences to describe the finished array.

Possible answer: Array showing 10 + 10 + 10 + 10 = 40

Or

4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 = 40
Children explore doubling with numbers up to 20
Reinforce understanding that ‘double’ is two groups of a number or an amount. Children show and explain what doubling means using concrete and pictorial representations.
They record doubling using the sentence, ‘Double ___ is ____’ and use repeated addition to represent doubles in the abstract. They look at representations to decide whether that shows doubling or not.

Can you sort these representations into doubles and not doubles? How do you know they’ve been doubled?

What comes next in my table, why?

How can we show the double differently?

If double 2 is 4, what is double 20?
What is the largest double we can roll on a normal dice?

<table>
<thead>
<tr>
<th>Build</th>
<th>Represent</th>
<th>Add</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟢++]=</td>
<td>🟢🟦🟦🟦</td>
<td>1+1=2</td>
<td>Double 1 is 2</td>
</tr>
<tr>
<td>🟢]=]</td>
<td>🟢🟦🟦</td>
<td>2+2=</td>
<td>Double 2 is</td>
</tr>
<tr>
<td>🟢]=]</td>
<td>🟢🟦</td>
<td>3+3=</td>
<td>Double 3 is</td>
</tr>
<tr>
<td>]]=</td>
<td></td>
<td>+=___</td>
<td>Double 4 is</td>
</tr>
</tbody>
</table>
Louise doubles her donuts. The picture shows what she had after she doubled her donuts.

Possible answer: Whitney is correct because the image shows what she was left with. She had 8 after she doubled and double 4 is 8.

Who do you agree with? Explain why.

Possible answer:

Louise started with 4 and ended with 8 donuts.

Louise started with 8 and ended with 16 donuts.

Louise started with 2 and ended with 4 donuts.

Complete the table by doubling each number.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

What patterns do you notice?

Possible answer:
The doubles increase by 2 each time.
The doubles are all even.
The doubles end in 2, 4, 6, 8 or 0.
Children start with a given total and make groups of an equal amount. They record their understanding in sentences, not through formal division at this stage.

Children can develop their understanding of equal groups by also being exposed to numbers which do not group equally.

Mathematical Talk

How can you tell if the groups are equal? How can you represent the equal groups? Do all numbers divide into equal groups of 2?

How do you sort the cubes into equal groups?

What would happen if there were 21 cubes?

Have I got equal groups?

How do you know?

Does each group need to be arranged in the same way for it to be equal?

Make Equal Groups - Grouping

Notes and Guidance

Varied Fluency

How many equal groups of 2 can you make with the mittens?

There are ____ groups of 2 mittens.

If you had 10 mittens, how many equal groups of 2 mittens could you make?

Take 20 cubes. Complete the sentences.

I can make ____ equal groups of 2

I can make ____ equal groups of 5

I can make ____ equal groups of 10

Complete the table. Use equipment to help you.

<table>
<thead>
<tr>
<th>Representation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>There are ____ altogether. There are ____ equal groups of ____</td>
</tr>
<tr>
<td></td>
<td>There are ____ altogether. There are ____ equal groups of ____</td>
</tr>
<tr>
<td></td>
<td>15 has been sorted into 3 equal groups of 5</td>
</tr>
<tr>
<td></td>
<td>____ has been sorted into ____ equal groups of ____</td>
</tr>
</tbody>
</table>
Tommy and Jack each have the same number of sweets.

Tommy has 5 equal groups of 2
Jack has 1 equal group.
How many sweets are in Jack’s group?

Jack has 10 sweets in his group.

I am thinking of a number between 20 and 30
I can only make equal groups of 5
What must my number be?
What happens when I try to make groups of 2 with it?
What happens when I try to make groups of 10 with it?

Answer: 25
Children can use practical equipment to solve this and discover what happens.
If you make equal groups of 2 with it there will be 1 left over.
If you make equal groups of 10 with it there will be 5 left over.
Children explore sharing as a model of division. They use 1:1 correspondence to share concrete objects into equal groups.

Children also need to be given the opportunity to see when a number of objects cannot be shared equally into equal groups.

How can I share the muffins equally? How many muffins on this plate? How many on this plate? Are they equal? If I had 9 muffins what would happen?

How can I share the objects equally? How many equal groups am I sharing the objects into? Are the groups equal? Are there any left over?

Varied Fluency

Share the muffins equally between the two plates. Complete the sentence.
___ cakes shared equally between 2 is ___

Collect 20 cubes. Use hoops to represent your friends. Can you share the cubes between 5 friends? 20 shared between 5 equals ___ Can you share the cubes between 2 friends? 20 shared between 2 equals ___ Can you share the cubes between 10 friends? 20 shared between 10 equals ___

Tim has 16 bananas. He shares them equally between two boxes. How many bananas are in each box? Represent and solve the problem.
Dora has 10 biscuits.

She wants to share them equally at her party.

How many people could be at the party?

Possible answers:
- 10 people
- 5 people
- 2 people
- 1 person (Dora)

There are 10 cakes and 2 boxes.
An equal amount needs to be put into each box.

Possible answer:
Eva is correct. She has shared the cakes equally and put 5 into each box.