Autumn - Block 1

Place Value
Overview

Small Steps

- Roman Numerals to 100
- Round to the nearest 10
- Round to the nearest 100
- Count in 1,000s
- 1,000s, 100s, 10s and 1s
- Partitioning
- Number line to 10,000
- 1,000 more or less
- Compare numbers
- Order numbers
- Round to the nearest 1,000
- Count in 25s
- Negative numbers

NC Objectives

- **Count in multiples of 6, 7, 9, 25 and 1,000.**
- Find 1,000 more or less than a given number.
- Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens and ones).
- Order and compare numbers beyond 1,000.
- Identify, represent and estimate numbers using different representations.
- Round any number to the nearest 10, 100 and 1,000.
- Solve number and practical problems that involve all of the above and with increasingly large positive numbers.
- Count backwards through zero to include negative numbers.
Roman Numerals

Notes and Guidance

Building on their Year 3 knowledge of numerals to 12 on a clock face, children explore Roman Numerals to 100

They explore what is the same and what is different between the number systems, for example there is no zero.

Mathematical Talk

Why is there no zero in the Roman Numerals? What might it look like?

Do you notice any patterns? If 20 is XX what might 200 be?

How can you check you have represented the Roman Numeral correctly?

Varied Fluency

Lollipop stick activity.
The teacher shouts out a number and the children make it with lollipop sticks.
Children could also do this in pairs or groups, and for a bit of fun they could test the teacher!

Each diagram shows a number in numerals, words and Roman Numerals.

Complete the diagrams.

Complete the function machines.
Roman Numerals

Reasoning and Problem Solving

Solve the following calculation:

\[\text{XIV} + \text{XXXVI} = _ _ _ _ _ _ \]

Answer: L

Other possible calculations:

\[C \div \text{II} = L \]
\[L \div \text{I} = L \]
\[\text{X} \times \text{V} = L \]
\[\text{XXV} \times \text{II} = L \]
\[\text{LXV} - \text{XV} = L \]
\[C - \text{L} = L \]
\[\text{XX} + \text{XX} + \text{X} = L \]

Mo says:

In the 10 times table, all the numbers have a zero. Therefore, in Roman Numerals all multiples of 10 have an X.

Research and give examples to prove whether or not Bobby is correct.

Mo is incorrect. A lot of multiples of 10 have an X in them, but the X can mean different things depending on its position. For example, X in 10 just means one ten, but X in XL means 10 less than 50. X in 60 (LX) means 10 more than 50. The number 50 has no X and neither does 100.
Round to the Nearest 10

Notes and Guidance

Starting with two digit numbers, children look at the position of a number on a number line. They apply their understanding to three digit numbers, focusing on the number of ones and rounding up or down.

Highlight the importance of five and the idea that although it is in the middle of the two numbers, the number is always rounded up.

Mathematical Talk

What is a multiple of 10? Which multiples of 10 does ____ sit between?

Which column do we look at when rounding to the nearest 10?

Which number is being represented? Will we round it up or down? Why?

Varied Fluency

Which multiples of 10 do the numbers sit between?

Say whether each number on the number line is closer to 160 or 170?

Round 163, 166 and 167 to the nearest 10

Complete the table:

<table>
<thead>
<tr>
<th>Start number</th>
<th>Rounded to the nearest 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 100 100 10 1 1</td>
<td>851</td>
</tr>
<tr>
<td>100 100 100 10 1 1</td>
<td>XCVIII</td>
</tr>
</tbody>
</table>
Round to the Nearest 10

Reasoning and Problem Solving

A number is rounded to 370
What could all the possibilities be?

<table>
<thead>
<tr>
<th>365</th>
<th>366</th>
<th>367</th>
<th>368</th>
<th>369</th>
<th>370</th>
<th>371</th>
<th>372</th>
<th>373</th>
<th>374</th>
</tr>
</thead>
</table>

Whitney says:

847 to the nearest 10 is 840

Do you agree with Whitney?

I don't agree with Whitney because 847 rounded to the nearest 10 is 850. I know this because ones ending in 5, 6, 7, 8 and 9 round up.

Two different two-digit numbers both round to 40 when rounded to the nearest 10

The sum of the two numbers is 79

What could the two numbers be?

Is there more than one possibility?

| 35 + 44 = 79 | 36 + 43 = 79 | 37 + 42 = 79 | 38 + 41 = 79 | 39 + 40 = 79 |
Round to the Nearest 100

Notes and Guidance

Children compare rounding to the nearest 10 (looking at the ones column) to rounding to the nearest 100 (looking at the tens column).

Children use their knowledge of multiples of 100, and understanding of which hundreds a number sits between, to help them round.

Mathematical Talk

How is rounding to the nearest 100 similar and different to the nearest 10?

Which column do we need to look at when rounding to the nearest 100?

Why do numbers up to 49 round down to the nearest 100 and numbers 50 to 99 round up?

Varied Fluency

Which multiples of 100 do the numbers sit between?

Say whether each number on the number line is closer to 500 or 600?

Round 535, 556 and 568 to the nearest 100. Use the stem sentence: ____ rounded to the nearest 100 is ____.

Complete the table:

<table>
<thead>
<tr>
<th>Start number</th>
<th>Rounded to the nearest 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>994</td>
<td></td>
</tr>
<tr>
<td>XLV</td>
<td></td>
</tr>
</tbody>
</table>
Round to the Nearest 100

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>Always, sometimes, never.</th>
<th>Always – a number with five in the tens column will be 50 or above so will always round up.</th>
<th>When a number is rounded to the nearest 100, it is 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain your reasons for each statement.</td>
<td>Sometimes – a number with five in the ones column might have 0 – 4 in the tens column (round down) or 5 – 9 (round up).</td>
<td>When the same number is rounded to the nearest 10, it is 250</td>
</tr>
<tr>
<td>• A number with a five in the tens column rounds up to the nearest hundred.</td>
<td></td>
<td>What could the number be?</td>
</tr>
<tr>
<td>• A number with a five in the ones column rounds up to the nearest hundred.</td>
<td></td>
<td>Is there more than one possibility?</td>
</tr>
<tr>
<td>• A number with a five in the hundreds column rounds up to the nearest hundred.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using the digit cards 0 – 9, can you make numbers that fit the following rules? You can only use each digit once.

1. When rounded to the nearest 10, I round to 20
2. When rounded to the nearest 10, I round to 10
3. When rounded to the nearest 100, I round to 1000

| 245, 246, 247, 248 and 249 are all possible answers. | To 20, it could be 15 – 24 |
| To 10, it could be 5 – 14 |
| To 500, it could be 650 – 749 |
| Only each digit once: 5, 24, 679 or 9, 17, 653 etc. |
Count in 1,000s

Notes and Guidance

Children look at four-digit numbers for the first time. They explore what a thousand is through concrete and pictorial representations, recognising that 1,000 is made up of ten hundreds.

They count in multiples of 1,000 combining numerals and words.

Mathematical Talk

How many hundreds make _____ thousands?

How is counting in thousands similar to counting in 1s?

When counting in thousands, which is the only digit to change?

How many sweets would there be in ___ jars?

Varied Fluency

tens make ____ hundred.

____ hundreds make ____ thousand.

How many sweets are there altogether?

1,000 1,000 1,000

There are three jars of ____ sweets. There are ___ sweets altogether.

What numbers are represented below?

1,000 1,000 1,000
Count in 1,000s

Reasoning and Problem Solving

Always, sometimes, never.

- When counting in hundreds, the ones digit changes.
- The thousands column changes every time you count in thousands.
- To count in thousands, we use 4-digit numbers.

Never, when counting in hundreds, the ones digit changes.

Always, the thousands column changes every time you count in thousands.

Sometimes, to count in thousands, we use 4-digit numbers.

Rosie says,

If I count in thousands from zero, I will always have an even answer.

True or false? Explain how you know.

True, because they all end in zero, which are multiples of 10 and multiples of 10 are even.
1,000s, 100s, 10s and 1s

Notes and Guidance

Children represent numbers to 9,999 on a place value grid and understand that a four-digit number is made up of 1,000s, 100s, 10s and 1s.

Moving on from Base 10 blocks, children start to unitise by using place value counters and digits.

Mathematical Talk

Can you represent the number on a place value grid?

How do you know you have formed the number correctly? What could you use to help you?

How is the value of zero represented within a number?

Varied Fluency

Complete the sentences.

There are _____ thousands, _____ hundreds, _____ tens and _____ ones.

The number is _____.

___ + ___ + ___ + ___ = ___

Complete the part-whole model for the number represented.

What is the value of the underlined digit in each number?

6,983 9,021 789 6,570

Represent each of the numbers on a place value grid.
1,000s, 100s, 10s and 1s

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>Create 4 four-digit numbers to fit the following rules:</th>
<th>Possible answers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The tens digit is 3</td>
<td>3,432</td>
</tr>
<tr>
<td>• The hundreds digit is two more than the ones digit</td>
<td>5,331</td>
</tr>
<tr>
<td>• The four digits have a total of 12</td>
<td>1,533</td>
</tr>
<tr>
<td></td>
<td>7,230</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use the clues to find the missing digits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,098</td>
</tr>
</tbody>
</table>

- The thousands and tens digit multiply together to make 36
- The hundreds and tens digit have a digit total of 9
- The ones digit is double the thousands.
- The whole number has a digit total of 21
Partitioning

Notes and Guidance

Children explore how numbers can be broken apart in more than one way.

They need to understand that $5000 + 300 + 20 + 9$ is equal to $4000 + 1300 + 10 + 19$ is crucial; children explore this explicitly.

Mathematical Talk

What number is being represented?

If we have 10 hundreds, can we exchange them for something?

If you know ten 100s are equal to 1000 and ten 10s are equal to 100, how can you use this to make different exchanges?

Varied Fluency

Move the Base 10 around and make exchanges to represent the number in different ways.

Represent the number in two different ways in a part-whole model.

Lily describes a number. She says, “My number has 4 thousands and 301 ones.”
What is Lily’s number?
Can you describe Lily’s number in a different way?
Partitioning

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>Which is the odd one out?</th>
<th>35 tens is the odd one out because it does not make 3,500, it makes 350</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,500</td>
<td>3,500 ones</td>
</tr>
<tr>
<td>2 thousands</td>
<td>35 tens</td>
</tr>
<tr>
<td>and 15 hundreds</td>
<td></td>
</tr>
</tbody>
</table>

Explain how you know.

<table>
<thead>
<tr>
<th>Jack says:</th>
<th>My number has five thousands, three hundreds and 64 ones.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amir says:</td>
<td>My number has fifty three hundreds, 6 tens and 4 ones.</td>
</tr>
</tbody>
</table>

Who has the largest number? Explain.

<table>
<thead>
<tr>
<th>Some place value counters are hidden. The total is six thousand, four hundred and thirty two.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Which place value counters could be hidden?</td>
</tr>
</tbody>
</table>

Think of at least three solutions.

| Could be one 1,000 counter and one 100 counter. |
| Could be ten 100 counters and ten 10 counters. |
| Could be eleven 100 counters. |
Number Line to 10,000

Notes and Guidance

Children estimate, work out and draw numbers on a number line to 10,000

They need to understand that it is possible to count in steps from both sides.

Number lines should be shown with or without start and end numbers, or with numbers already placed on it.

Mathematical Talk

Which side of the number line did you start from? Why?

When estimating where a number should be placed, what facts can help you?

Can you use your knowledge of place value to prove that you are correct?

When a number line has no values at the end, what strategies could you use to help you figure out the missing value? Could there be more than one answer?

Varied Fluency

Draw arrows to show where the numbers would be on the number line.

- 8,750
- 4,100

Estimate the value of each letter.

- Estimate the value of A.
Number Line to 10,000

Reasoning and Problem Solving

Place 6,750 on each of the number lines.

6,000 7,000
6,500 8,000
0 10,000

Are they in the same place on each line? Why?

No, each line has different numbers at the start and end so the position of 6,750 changes.

If the number on the number line is 9,200, what could the start and end numbers be? Find three different ways.

Possible answers:
8,400 – 9,500
5,000 – 10,000
9,120 – 9,920
1,000 More or Less

Notes and Guidance

Building on Year 3, where they explored finding 1, 10 and 100 more or less, children now move onto finding 1,000 more or less than a given number.

Show children that they can represent their answer in a number of ways, for example using numerals or Base 10

Mathematical Talk

What is 1,000 more than/less than a number? Which column changes?

What happens when I subtract 1,000 from 9,209?

Can you show me two different ways of showing 1,000 more/less than e.g. pictures, place value charts, equipment.

Complete this sentence: I know that 1,000 more than ____ is ____ because ... I can prove this by ____.

Varied Fluency

Fill in the missing values.

\[9,523 + 10 = \Box\]

\[\Box + 3,589 = 3,689\]

\[3,891 + \Box = 4,891\]

Complete the table.

<table>
<thead>
<tr>
<th>1,000 less</th>
<th>Number</th>
<th>1,000 more</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Find 1,000 more and 1,000 less than each number.

| 5,000 | 7,500 | 2,359 | 8,999 |

Use concrete resources to prove you are correct.
1,000 More or Less

Reasoning and Problem Solving

Complete the missing boxes:

- 4,896 + 1,000 →
- 3,784 + 1,000 → 2,784
- - 1,000 → 986

Jack says:

When I add 1,000 to 4,325, I only have to change the thousands digit (4).

Is he correct?
Which digit does he need to change?

Fill in the boxes by finding the patterns:

- 3,210
- 1,210
- 3,110
- 6,010

10 less than my number is 1,000 more than 5,300. What is my number?

Can you write your own problem similar to this?
Compare 4-digit Numbers

Notes and Guidance
Children compare 4-digit numbers using comparison language and symbols to determine which is greater and which is smaller.

Children should represent numbers using concrete manipulatives and draw them pictorially.

Varied Fluency
- Fill in the circle using <, > or =

![Diagrams showing place value blocks and numbers](image)

5,689

5,892

- Circle the smallest amount.
 - Two thousand, three hundred and ninety seven
 - 6,000 + 400 + 50 + 6
 - 9 thousands, 2 hundreds and 6 ones

- Complete the statements.
 - 1,985 > ___
 - 4,203 < 4,000 + ___ + 4

Mathematical Talk

Which numbers are being presented?

Do you start counting the thousands, hundreds, tens or ones first? Why?

Which column do you start comparing from? Why?

What strategy did you use to compare the two numbers? Is this the same or different to your partner?

How many answers can you find?
I am thinking of a number. It is greater than 3,000, but smaller than 5,000

The digits add up to 15
What could the number be?

Write down as many possibilities as you can.

The difference between the largest and smallest digit is 6. How many numbers do you now have?

I have 13 numbers:
3,228
3,282
3,822
4,560
4,560
4,506
4,605
3,660
3,606
3,147
3,174
3,417
3,471

Use digit cards 1 to 5 to complete the comparisons:

564□ < □73□
2□38 > 23□5

Possible answer:
5641 < 5732
2438 > 2335

You can only use each digit once.
Children explore ordering a set of numbers in ascending and descending order.

Children find the largest or smallest number from a set.

Fill in the circle using <, > or =

2,764

XXVII

Here are four digit cards. 4 0 5 3

Arrange them to make as many different 4-digit numbers as you can and put them in ascending order.

Rearrange four counters in the place value chart to make different numbers.

<table>
<thead>
<tr>
<th>1000s</th>
<th>100s</th>
<th>10s</th>
<th>1s</th>
</tr>
</thead>
</table>

Record all your numbers and write them in descending order.
Lola has ordered five 4-digit numbers. The smallest number is 3,450, the largest number is 3,650.

All the other numbers have digit totals of 20.

What could the other three numbers be?

Explain the mistake.

<table>
<thead>
<tr>
<th>1,354</th>
<th>3,273</th>
<th>3,314</th>
<th>989</th>
<th>9,993</th>
</tr>
</thead>
</table>

smallest | | | | greatest |

3,476
3,584
3,593

The number 989 is in the wrong place. A common misconception could be that the first digit is a high number the whole number must be large. They have forgotten to check how many digits there are in the number before ordering.

Put these amounts in ascending order.

Half of 2,400
LXXXVI

Put one number in each box so that the list of numbers is ordered largest to smallest.

<table>
<thead>
<tr>
<th>1000s</th>
<th>100s</th>
<th>10s</th>
<th>1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Possible answer:

<table>
<thead>
<tr>
<th>1000s</th>
<th>100s</th>
<th>10s</th>
<th>1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Can you find more than one way?
Round to the Nearest 1,000

Notes and Guidance

Children round to the nearest thousand for the first time, building on their knowledge of rounding to the nearest 10 and 100.

Children must understand which thousands number a number sits between.

When rounding to the nearest 1,000, children should look at the digits in the hundreds column.

Mathematical Talk

Which thousands numbers does ____ sit between?

Which place value column do we need to look at when we round the nearest 1,000?

Varied Fluency

Say whether each number on the number line is closer to 3,000 or 4,000

3,000 3,280 3,591 3,700 4,000

Round 3,280, 3,591 and 3,700 to the nearest thousand.

Round these numbers to the nearest 1,000
- Eight thousand and fifty-six
- Five thousands, five hundreds, five tens and five ones
- LXXXII

Complete the table.

<table>
<thead>
<tr>
<th>Start number</th>
<th>Rounded to the nearest 10</th>
<th>Rounded to the nearest 100</th>
<th>Rounded to the nearest 1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>LXXXII</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,999</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
David's mum and dad are buying a car. They look at the following cars:

- Car A: Approximately 10,000 miles
- Car B: Approximately 8,000 miles
- Car C: Approximately 8,000 miles

Are all of the cars correctly advertised? Explain your reasoning.

Car B is incorrectly advertised. It should be rounded up to 9,000 miles.

A number is rounded to the nearest thousand.

The answer is 7,000.

What could the original number have been?

Give five possibilities.

What is the greatest number possible?

What is the smallest number possible?

Possible answers:

- 6,678
- 7,423
- 7,192
- 6,991

Greatest: 7,499
Smallest: 6,500
Count in 25s

Notes and Guidance

Focusing on patterns, children count in 25s. They use their knowledge of counting in 50s and 100s to become fluent in 25s.

Children should recognise and use the fact that there are four 25s in 100

Mathematical Talk

What should the correct number be?

Can you notice a pattern as the numbers increase/decrease?

What digit do multiples of 25 end in?

What’s the same and what’s different when counting in 50s and 25s?

Varied Fluency

Look at the number patterns. What do you notice?

<table>
<thead>
<tr>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
<th>125</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
</tbody>
</table>

Complete the number tracks

<table>
<thead>
<tr>
<th>25</th>
<th>75</th>
<th>125</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>725</td>
<td>700</td>
<td>650</td>
<td>600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>250</th>
</tr>
</thead>
</table>

Circle the mistake in each sequence.

2, 275, 2,300, 2,325, 2,350, 2,400, ...

1,000, 975, 925, 900, 875, ...
Count in 25s

Reasoning and Problem Solving

Hayley is counting in 25s and 1,000s. She says:

- Multiples of 1,000 are also multiples of 25
- Multiples of 25 are therefore multiples of 1,000

Do you agree with Hayley? Explain why.

Jeff is counting down in 25s from 790. Will he say 725?
Explain your answer.

I don’t agree. Multiples of 1,000 are multiples of 25 because 25 goes into 1,000 exactly, but not all multiples of 25 are multiples of 1,000 e.g. 1,075

No, he will not say 725 because:
790, 765, 740, 715, 690, 665, ...

Two race tracks have been split into 25m intervals.

Race track A

Race track B

What errors have been made?

Possible answers:
Race track A has miscounted when adding 25m to 100m. After this they have continued to count in 25s correctly from 150

Race track B has miscounted when adding 25m to 150m. They have then added 25m from this point.
Negative Numbers

Notes and Guidance
Children recognise that there are numbers below zero. It is essential that this concept is linked to real life situations such as temperature, water depth, money etc.

Children should be able to count back through zero. This can be supported through the use of number squares, number lines or other visual aids.

Varied Fluency

Complete the number lines

Fill in the missing temperatures on the thermometers.

Mathematical Talk
Can you use the words positive and negative in a sentence to describe numbers?

What do you notice about positive and negative numbers on the number line? Can you see any symmetry?

Is \(-1\) degrees warmer or colder than \(-4\) degrees?

Zak is counting backwards out loud. He says, “two, one, minus one, minus two, minus three ...”

What mistake has Zak made?
Reasoning and Problem Solving

Can you spot the mistake in these number sequences?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>2, 0, 0, −2, −4</td>
<td>a)</td>
<td>0 is incorrect as it is written twice.</td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>1, −2, −4, −6, −8</td>
<td>b)</td>
<td>1 is incorrect. The sequence has a difference of 2 each time, so the first number should be 2</td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>5, 0, −5, −10, −20</td>
<td>c)</td>
<td>−20 is incorrect. The sequence is decreasing by 5, so the final number should be −15</td>
<td></td>
</tr>
</tbody>
</table>

Explain how you found the mistake and convince me you are correct.

Sami counted down in 3s until he reached −18.

He started at 21, what was the tenth number he said?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sami counted down in 3s until he reached −18</td>
<td>He started at 21, what was the tenth number he said?</td>
<td>−6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ensure the first number said is 21,
21, 18, 15, 12, 9, 6, 3, 0, −3, −6, ...