Autumn Scheme of Learning

Year 5

#MathsEveryoneCan

2019-20
<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
<th>Week 8</th>
<th>Week 9</th>
<th>Week 10</th>
<th>Week 11</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Measurement: Perimeter and Area</td>
<td>Consolidation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: Place Value</td>
<td>Number: Addition and Subtraction</td>
<td>Statistics</td>
<td>Number: Multiplication and Division</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number: Decimals and Percentages</td>
<td>Consolidation</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number: Fractions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number: Multiplication and Division</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Measurement: Volume</td>
<td>Consolidation</td>
</tr>
<tr>
<td></td>
<td>Number: Decimals</td>
<td>Geometry: Properties of Shape</td>
<td>Geometry: Position and Direction</td>
<td>Measurement: Converting Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©White Rose Maths
Autumn - Block 1
Place Value
Overview

Small Steps

- Numbers to 10,000
- Roman Numerals to 1,000
- Round to nearest 10, 100 and 1,000
- Numbers to 100,000
- Compare and order numbers to 100,000
- Round numbers within 100,000
- Numbers to a million
- Counting in 10s, 100s, 1,000s, 10,000s, and 100,000s
- Compare and order numbers to one million
- Round numbers to one million
- Negative numbers

NC Objectives

Read, write, order and compare numbers to at least 1,000,000 and determine the value of each digit.

Count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000

Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers including through zero.

Round any number up to 1,000,000 to the nearest 10, 100, 1,000, 10,000 and 100,000

Solve number problems and practical problems that involve all of the above.

Read Roman numerals up to 1,000 (M) and recognise years written in Roman numerals.
Numbers to 10,000

Notes and Guidance

Children use concrete manipulatives and pictorial representations to recap representing numbers up to 10,000.

Within this step, children must revise adding and subtracting 10, 100 and 1,000.

They discuss what is happening to the place value columns, when carrying out each addition or subtraction.

Mathematical Talk

Can you show me 8,045 (any number) in three different ways?

Which representation is the odd one out? Explain your reasoning.

What number could the arrow be pointing to?

Which column(s) change when adding 10, 100, 1,000 to 2,506?

Varied Fluency

Match the diagram to the number.

Which diagram is the odd one out?

Complete the table.

<table>
<thead>
<tr>
<th></th>
<th>Add 10</th>
<th>Add 100</th>
<th>Add 1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,506</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,999</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Numbers to 10,000

Reasoning and Problem Solving

Dora has made five numbers, using the digits 1, 2, 3 and 4
She has changed each number into a letter.

Her numbers are
aabcd
acdbc
dcaba
cdadc
bdaab

Here are three clues to work out her numbers:

- The first number in her list is the greatest number.
- The digits in the fourth number total 12
- The third number in the list is the smallest number.

| 44,213 |
| 43,123 |
| 13,424 |
| 31,413 |
| 21,442 |

Tommy says he can order the following numbers by only looking at the first three digits.

12,516 12,832
12,679
12,538 12,794

Is he correct?

He is incorrect because two of the numbers start with twelve thousand, five hundred therefore you need to look at the tens to compare and order.

Explain your answer.
Roman Numerals

Notes and Guidance

Building on their knowledge of Roman Numerals to 100, from Year 4, children explore Roman Numerals to 1,000

They explore what is the same and what is different about the number systems, for example there is no zero in the Roman system.

Writing the date in Roman Numerals could be introduced and so this concept can be revisited every day.

Mathematical Talk

Why is there no zero in Roman Numerals?

Do you notice any patterns in the Roman number system?

How can you check you have represented the Roman Numeral correctly?

Can you use numbers you know, such as 1, 10 and 100 to help you?

Varied Fluency

Lollipop stick activity.
The teacher shouts out a number and the children make it with lollipop sticks.
Children could also do this in pairs or groups, or for a bit of fun they could test the teacher!

Each diagram shows a number in digits, words and Roman Numerals.

Complete the diagrams.

Complete the function machines.

CCC → +10 → DCLXXV

−1 →
Roman Numerals

Reasoning and Problem Solving

Solve

Possible answers:

Here is part of a Roman Numerals hundred square.

Complete the missing values.

What patterns do you notice?

- XLVI
- LIV
- LV
- LXV
Round to 10, 100 and 1,000

Notes and Guidance

Children build on their knowledge of rounding to 10, 100 and 1,000 from Year 4. They need to experience rounding up to and within 10,000.

Children must understand that the column from the question and the column to the right of it are used e.g. when rounding 1,450 to the nearest hundred – look at the hundreds and tens columns. Number lines are a useful support.

Mathematical Talk

Which place value column do we need to look at when we round to the nearest 1,000?

When is it best to round to the nearest 10? 100? 1,000?
Can you give an example of this?
Can you justify your reasoning?

Is there more than one solution?
Will the answers to the nearest 100 and 1,000 be the same or different for the different start numbers?

Varied Fluency

Complete the table.

<table>
<thead>
<tr>
<th>Start Number</th>
<th>Rounded to the nearest 10</th>
<th>Rounded to the nearest 100</th>
<th>Rounded to the nearest 1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCCLXIX</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For each number, find five numbers that round to it when rounding to the nearest 100:

- **300**
- **10,000**
- **8,900**

Complete the table.

<table>
<thead>
<tr>
<th>Start Number</th>
<th>Nearest 10</th>
<th>Nearest 100</th>
<th>Nearest 1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>365</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,770</td>
</tr>
</tbody>
</table>
Rounding to 10, 100 and 1,000

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>Jack</th>
<th>Whitney</th>
<th>Teddy</th>
</tr>
</thead>
</table>
| My number rounded to the nearest 10 is 1,150
Rounded to the nearest 100 it is 1,200
Rounded to the nearest 1,000 it is 1,000 |
| 2,567 to the nearest 100 is 2,500 |
| Do you agree with Whitney?
Explain why. |
| I do not agree with Whitney because 2,567 rounded to the nearest 100 is 2,600. I know this because if the tens digit is 5, 6, 7, 8 or 9 we round up to the next hundred. |
| 4,725 to the nearest 1,000 is 5,025 |
| Explain the mistake Teddy has made. |
| Teddy has correctly changed four thousand to five thousand but has added the tens and the ones back on. When rounding to the nearest thousand, the answer is always a multiple of 1,000 |

What could Jack's number be?

Can you find all of the possibilities?
Numbers to 100,000

Notes and Guidance

Children focus on numbers up to 100,000
They represent numbers on a place value grid, read and write numbers and place them on a number line to 100,000

Using a number line, they find numbers between two points, place a number and estimate where larger numbers will be.

Mathematical Talk

How can the place value grid help you to add 10, 100 or 1,000 to any number?
How many digits change when you add 10, 100 or 1,000? Is it always the same number of digits that change?
How can we represent 65,048 on a number line?
How can we estimate a number on a number line if there are no divisions?
Do you need to count forwards and backwards to find out if a number is in a number sequence? Explain.

Varied Fluency

A number is shown in the place value grid.

<table>
<thead>
<tr>
<th>10,000s</th>
<th>1,000s</th>
<th>100s</th>
<th>10s</th>
<th>1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔴🔴🔴🔴</td>
<td>🔴🔴🔴</td>
<td>🔴🔴🔴</td>
<td>🔴🔴🔴</td>
<td>🔴🔴</td>
</tr>
</tbody>
</table>

Write the number in figures and in words.
- Alex adds 10 to this number
- Tommy adds 100 to this number
- Eva adds 1,000 to this number
Write each of their new numbers in figures and in words.

Complete the grid to show the same number in different ways.

<table>
<thead>
<tr>
<th>Counters</th>
<th>Part-whole model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65,048</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bar model</th>
<th>Number line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete the missing numbers.

\[59,000 = 50,000 + \square\]
\[
\square = 30,000 + 1,700 + 230
\]
\[75,480 = \square + 300 + \square\]
Numbers to 100,000

Reasoning and Problem Solving

Here is a number line.

![Number line with points A and B]

A = 2,800
B = 2,760

What is the value of A?
What is the value of B?
C is 500 less than B. Add C to the number line.

Here are three ways of partitioning 27,650:
- 27 thousands and 650 ones
- 27 thousands, 5 hundreds and 150 ones
- 27 thousands and 65 tens

Possible answers:
- 2 ten thousands, 6 hundreds and 5 tens
- 20 thousands, 7 thousands and 650 ones

Rosie counts forwards and backwards in 10s from 317.

Circle the numbers Rosie will count.

- 427
- 997
- 7
- 5,627
- 1,666
- 3,210
- 5,627
- −23
- 7
- −3

Any positive number will have to end in a 7.
Any negative number will have to end in a 3.

Explain why Rosie will not say the other numbers.
Year 5 | Autumn Term | Week 1 to 3 – Number: Place Value

Compare and Order

Notes and Guidance

Children will compare and order numbers up to 100,000 by applying their understanding from Year 4 and how numbers can be represented in different ways.

Children should be able to compare and order numbers presented in a variety of ways, e.g. using place value counters, part-whole models, Roman numerals etc.

Mathematical Talk

In order to compare numbers, what do we need to know?

What is the value of each digit in the number 63,320?

What is the value of _____ in this number?

What is the value of the whole? Can you suggest other parts that make the whole?

What number does MMXVII represent?

Varied Fluency

Put these numbers in ascending order.

Add the symbol <, > or = to make the statement correct.

Use six counters to make five different 5-digit numbers.

Order your numbers from greatest to smallest.
Place the digits cards 0 to 9 face down and select five of them.

Make the greatest number possible and the smallest number possible.

How do you know which is the greatest or smallest?

Dependent on numbers chosen.

- Smallest: 12,349
- Greatest: 94,321

I know this is the greatest number because the digit cards with the larger numbers are in the place value columns with the greater values.

Using the digit cards 0 to 9, create three different 5-digit numbers that fit the following clues:

- The digit in the hundreds column and the ones column have a difference of 2
- The digit in the hundreds column and the ten thousands column has a difference of 2
- The sum of all the digits totals 19

Possible answers include:

- 47,260
- 56,341
- 18,325
- 20,476
Round within 100,000

Notes and Guidance

Children continue to work on rounding, now using numbers up to 100,000. Children use their knowledge of multiples of 10, 100, 1,000 and 10,000 to work out which two numbers the number they are rounding sits between. A number line is a good way to visualise which multiple is the nearest. Children may need reminding of the convention of rounding up if numbers are exactly halfway.

Mathematical Talk

Which place value column do we need to look at when we round to the nearest 1,000?

Why would we round these distances to the nearest 1,000 miles?

When is it best to round to 10? 100? 1,000? Can you give an example of this? Can you justify your reasoning?

Varied Fluency

Round 85,617
- To the nearest 10
- To the nearest 100
- To the nearest 1,000
- To the nearest 10,000

Round the distances to the nearest 1,000 miles.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Miles from Manchester airport</th>
<th>Miles to the nearest 1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>3,334</td>
<td></td>
</tr>
<tr>
<td>Sydney</td>
<td>10,562</td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>5,979</td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>11,550</td>
<td></td>
</tr>
</tbody>
</table>

Complete the table.

<table>
<thead>
<tr>
<th>Rounded to the nearest 100</th>
<th>Start Number</th>
<th>Rounded to the nearest 1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15,999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28,632</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55,555</td>
<td></td>
</tr>
</tbody>
</table>
Round within 100,000

Reasoning and Problem Solving

Round 59,996 to the nearest 1,000
Round 59,996 to the nearest 10,000

What do you notice about the answers?

Can you think of three more numbers where the same thing could happen?

Both numbers round to 60,000
Other examples:
19,721 to the nearest 1,000 and 10,000
697 to the nearest 10 and 100
22,982 to the nearest 100 and 1,000

Two 5-digit numbers have a difference of five.

When they are both rounded to the nearest thousand, the difference is 1,000

What could the numbers be?

Two numbers with a difference of five where the last three digits are between 495 and 504

e.g. 52,498 and 52,503

©White Rose Maths
Numbers to One Million

Notes and Guidance

Children read, write and represent numbers to 1,000,000

They will recognise large numbers represented in a part-whole model, when they are partitioned in unfamiliar ways.

Children need to see numbers represented with counters on a place value grid, as well as drawing the counters.

Mathematical Talk

If one million is the whole, what could the parts be?

Show me 800,500 represented in three different ways. Can 575,400 be partitioned into 4 parts in a different way?

Where do the commas go in the numbers?
How does the place value grid help you to represent large numbers?
Which columns will change in value when Eva adds 4 counters to the hundreds column?

Varied Fluency

<table>
<thead>
<tr>
<th>Thousands</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>T</td>
</tr>
</tbody>
</table>

Use counters to make these numbers on the place value chart.

32,651 | 456,301 | 50,030

Can you say the numbers out loud?

Complete the following part-whole diagrams.

Eva has the following number.

<table>
<thead>
<tr>
<th>Thousands</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>T</td>
</tr>
</tbody>
</table>

She adds 4 counters to the hundreds column.

What is her new number?
Describe the value of the digit 7 in each of the following numbers. How do you know?

407,338: the value is 7 thousand. It is to the left of the hundreds column.

700,491: the value is 7 hundred thousand. It is a 6-digit number and there are 5 other numbers in place value columns to the right of this number.

25,571: the value is 7 tens. It is one column to the left of the ones column.

The bar models are showing a pattern.

Draw the next three.

Create your own pattern of bar models for a partner to continue.
Counting in Powers of 10

Notes and Guidance

Children complete number sequences and can describe the term-to-term rule e.g. add ten each time. It is important to include sequences that go down as well as those that go up.

They count forwards and backwards in powers of ten up to 1,000,000

Mathematical Talk

Will there be any negative numbers in this sequence?

What pattern do you begin to see with the positive and negative numbers in the sequence?

What patterns do you notice when you compare sequences increasing or decreasing in 10s, 100s, 1,000s etc.?

Can you create a rule for the sequence?

Varied Fluency

Complete the sequence.

___, ___, 2, ___, 22, ___, ___, ___, 72

The rule for the sequence is ____________.

Circle and correct the mistake in each sequence.

• 7,875, 8,875, 9,875, 11,875, 12,875, 13,875, ...

• 864,664, 764,664, 664,664, 554,664, 444,664, ...

Here is a Gattegno chart showing 32,450

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
</tr>
<tr>
<td>1,000</td>
<td>2,000</td>
<td>3,000</td>
<td>4,000</td>
<td>5,000</td>
<td>6,000</td>
<td>7,000</td>
<td>8,000</td>
<td>9,000</td>
</tr>
<tr>
<td>10,000</td>
<td>20,000</td>
<td>30,000</td>
<td>40,000</td>
<td>50,000</td>
<td>60,000</td>
<td>70,000</td>
<td>80,000</td>
<td>90,000</td>
</tr>
</tbody>
</table>

Give children a target number to make then let them choose a card. Children then need to adjust their number on the chart.
Counting in Powers of 10

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>Amir</th>
<th>The 10th term is 12,666 because Amir is adding 1,000 each time. He should have added 5,000 not doubled the 5th term.</th>
<th>Rosie has made a mistake. She is counting in 100s; therefore the ones column should never change.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The 10th term will be 15,322 because I will double the 5th term.</td>
<td>Jack has also made a mistake as he is counting in 1,000s, so the tens and ones columns won’t change.</td>
</tr>
<tr>
<td></td>
<td>Is he correct? Explain why.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amir writes the first five numbers of a sequence.

They are 3,666, 4,666, 5,666, 6,666, 7,666

I am counting up in 10s from 184
I will include 224

I am counting up in 100s from 604
I will include 1,040

I am counting up in 1,000s from 13
I will include 130,000

Who has made a mistake? Identify anyone who has made a mistake and explain how you know.
Compare and Order

Notes and Guidance

Children compare and order numbers up to 1,000,000 using comparison vocabulary and symbols.

They use a number line to compare numbers, and look at the importance of focusing on the column with the highest place value when comparing numbers.

Mathematical Talk

What do we need to know to be able to compare and order large numbers?
Why can’t we just look at the thousands columns when we are ordering these five numbers?
What is the value of each digit?
What is the value of ____ in this number?

What is the value of the whole? Can you suggest other parts that make the whole?
Can you write a story to support your part-whole model?

Varied Fluency

Put the number cards in order of size.

13,010 13,100 13,011 13,110 13,111

Estimate the values of A, B and C.

A B C

Here is a table showing the population in areas of Yorkshire.

<table>
<thead>
<tr>
<th>Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halifax</td>
<td>88,134</td>
</tr>
<tr>
<td>Brighouse</td>
<td>32,360</td>
</tr>
<tr>
<td>Leeds</td>
<td>720,492</td>
</tr>
<tr>
<td>Huddersfield</td>
<td>146,234</td>
</tr>
<tr>
<td>Wakefield</td>
<td>76,886</td>
</tr>
<tr>
<td>Bradford</td>
<td>531,200</td>
</tr>
</tbody>
</table>

Use <, > or = to make the statements correct.

The population of Halifax the population of Wakefield.

Double the population of Brighouse the population of Halifax.
Compare and Order

Reasoning and Problem Solving

The missing number is an odd number.

When rounded to the nearest 10,000 it is 440,000

The sum of the digits is 23

| 475,000 | ? | 407,500 |

Greatest Smallest

What could the number be?

Can you find three possibilities?

Possible answers include:

- 444,812
- 435,812
- 439,502

Here are four number cards.

| 42,350 | 43,385 |
| 56,995 | 56,963 |

Four children take one each and say a clue.

Mo: 56,995
Rosie: 42,350
Jack: 43,385
Dora: 56,963

- **Mo**
 - My number is 57,000 when rounded to the nearest 100

- **Rosie**
 - My number has exactly three hundreds in it

- **Jack**
 - My number is 43,000 when rounded to the nearest thousand

- **Dora**
 - My number is exactly 100 less than 57,063

Which card did each child have?
Round within a Million

Notes and Guidance

Children use numbers with up to six digits, to recap previous rounding, and learn the new skill of rounding to the nearest 100,000.

They look at cases when rounding a number for a purpose, including certain contexts where you round up when you wouldn’t expect two e.g. to pack 53 items in boxes of 10 you would need 6 boxes.

Mathematical Talk

How many digits does one million have?

Why are we rounding these populations to the nearest 100,000?

Can you partition the number _______ in different ways?

Which digits do you need to look at when rounding to the nearest 10? 100? 1,000? 10,000? 100,000?

How do you know which has the greatest value? Show me.

Varied Fluency

Round these populations to the nearest 100,000

<table>
<thead>
<tr>
<th>City</th>
<th>Population</th>
<th>Rounded to the nearest 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leeds</td>
<td>720,492</td>
<td></td>
</tr>
<tr>
<td>Durham</td>
<td>87,559</td>
<td></td>
</tr>
<tr>
<td>Sheffield</td>
<td>512,827</td>
<td></td>
</tr>
<tr>
<td>Birmingham</td>
<td>992,000</td>
<td></td>
</tr>
</tbody>
</table>

Round 450,985 to the nearest

- 10
- 100
- 1,000
- 10,000
- 100,000

At a festival, 218,712 people attend across the weekend. Tickets come in batches of 100,000.

How many batches should the organisers buy?
Round within a Million

Reasoning and Problem Solving

| The difference between two 3-digit numbers is two. | 499 and 501
| When each number is rounded to the nearest 1,000 the difference between them is 1,000 | 498 and 500
| What could the two numbers be? |
| When the difference between A and B is rounded to the nearest 100, the answer is 700 |
| When the difference between B and C is rounded to the nearest 100, the answer is 400 |
| A, B and C are not multiples of 10 |
| What could A, B and C be? |
| A − B is between 650 to 749 |
| B has to be greater than 400 to complete B − C = 400 |
| Possible answer: |
| A = 1,241 |
| B = 506 |
| C = 59 |

©White Rose Maths
Year 5 | Autumn Term | Week 1 to 3 – Number: Place Value

Negative Numbers

Notes and Guidance

Children continue to explore negative numbers and their position on a number line.

They need to see and use negative numbers in context, such as temperature, to be able to count back through zero. They may need to be reminded to call them negative numbers e.g. “negative four” rather than “minus four”.

Mathematical Talk

Do we include zero when counting backwards?

Which is the coldest/warmest temperature?
How can we estimate where a number goes on this number line?
Does it help to estimate where zero goes first? Why?

What was the temperature increase/decrease? Can you show how you know the increase/decrease on a number line?

Varied Fluency

Here are three representations for negative numbers.

What is the same and what is different about each representation?

Estimate and label where 0, −12 and −20 will be on the number line.

Whitney visits a zoo.
The rainforest room has a temperature of 32°C
The Arctic room has a temperature of −24°C
Show the difference in room temperatures on a number line.
Negative Numbers

Reasoning and Problem Solving

True or False?

- The temperature outside is -5 degrees, the temperature inside is 25 degrees. The difference is 20 degrees.
 - False: the difference is 30 degrees because it is 5 degrees from -5 to 0. Added to 25 totals 30.

- Four less than negative six is negative two.
 - False: it is negative 10 because the steps are going further away from zero.

- 15 more than -2 is 13
 - True

Explain how you know each statement is true or false.

Put these statements in order so that the answers are from smallest to greatest.

- The difference between -24 and -76
 - 52

- The even number that is less than -18 but greater than -22
 - -20

- The number that is half way between 40 and -50
 - -5

- The difference between -6 and 7
 - 13

Ordered: $-20, -5, 13, 52$