Spring Scheme of Learning

Year 2/3

#MathsEveryoneCan

2019-20
How to use the mixed-age SOL

In this document, you will find suggestions of how you may structure a progression in learning for a mixed-age class.

Firstly, we have created a yearly overview.

For each block of learning, we have grouped the small steps into themes that have similar content. Within these themes, we list the corresponding small steps from one or both year groups. Teachers can then use the single-age schemes to access the guidance on each small step listed within each theme.

The themes are organised into common content (above the line) and year specific content (below the line). Moving from left to right, the arrows on the line suggest the order to teach the themes.

Each term has 12 weeks of learning. We are aware that some terms are longer and shorter than others, so teachers may adapt the overview to fit their term dates.

The overview shows how the content has been matched up over the year to support teachers in teaching similar concepts to both year groups. Where this is not possible, it is clearly indicated on the overview with 2 separate blocks.
How to use the mixed-age SOL

Here is an example of one of the themes from the Year 1/2 mixed-age guidance.

Points to consider

- Use the mixed-age schemes to see where similar skills from both year groups can be taught together. Learning can then be differentiated through the questions on the single-age small steps so both year groups are focusing on their year group content.
- When there is year group specific content, consider teaching in split inputs to classes. This will depend on support in class and may need to be done through focus groups.
- On each of the block overview pages, we have described the key learning in each block and have given suggestions as to how the themes could be approached for each year group.
- We are fully aware that every class is different and the logistics of mixed-age classes can be tricky. We hope that our mixed-age SOL can help teachers to start to draw learning together.

Subtraction

Year 1 (Aut B2, Spr B1)
- How many left? (1)
- How many left? (2)
- Counting back
- Subtraction - not crossing 10
- Subtraction - crossing 10 (1)
- Subtraction - crossing 10 (2)

Year 2 (Aut B2, B3)
- Subtract 1-digit from 2-digits
- Subtract with 2-digits (1)
- Subtract with 2-digits (2)
- Find change - money

In order to create a more coherent journey for mixed-age classes, we have re-ordered some of the single-age steps and combined some blocks of learning e.g. Money is covered within Addition and Subtraction.

The bullet points are the names of the small steps from the single-age SOL. We have referenced where the steps are from at the top of each theme e.g. Aut B2 means Autumn term, Block 2. Teachers will need to access both of the single-age SOLs from our website together with this mixed-age guidance in order to plan their learning.
<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
<th>Week 8</th>
<th>Week 9</th>
<th>Week 10</th>
<th>Week 11</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td></td>
</tr>
<tr>
<td>Number: Place Value Y2 – Numbers to 100</td>
<td>Number: Addition and Subtraction Year 2- Numbers within 100 (including money)</td>
<td>Year 3- Numbers within 1,000 (including money)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number: Multiplication</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Number: Division</td>
<td>Statistics</td>
<td>Measurement: Length and Height</td>
<td>Geometry: Year 2: Shape, Position and Direction Year 3: Shape and Perimeter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number: Year 2: Fractions & Consolidation Year 3: Fractions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problem solving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Year 3: Fractions recap</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consolidation and Investigations</td>
</tr>
</tbody>
</table>
In this section, content from single-age blocks are matched together to show teachers where there are clear links across the year groups. Teachers may decide to teach the lower year’s content to the whole class before moving the higher year on to their age-related expectations. The lower year group is not expected to cover the higher year group’s content as they should focus on their own age-related expectations.

In this section, content that is discrete to one year group is outlined. Teachers may need to consider a split input with lessons or working with children in focus groups to ensure they have full coverage of their year’s curriculum. Guidance is given on each page to support the planning of each block.

The themes should be taught in order from left to right.
Year 2/3 | Spring Term | Week 1 to 2 – Division

Division

Common Content

Year 2 (Spr B1)
- Make equal groups - sharing
- Make equal groups - grouping
- Divide by 2
- Divide by 5
- Divide by 10

Year 3 (Spr B1)
- Divide 2-digits by 1-digit (1)
- Divide 2-digits by 1-digit (2)
- Divide 2-digits by 1-digit (3)

In Year 2, children are introduced to the division symbol (÷) and use this to write number sentences. Children recall division facts from the 2, 5 and 10 times tables and use their understanding of dividing by 2 to find odd and even numbers.

In Year 3, children start to investigate different ways to divide larger 2-digit numbers by 1-digit numbers. These include using concrete representations and part-whole models with and without remainders.

Scaling and correspondence problems are distinct to Year 3 and draw together their multiplication and division understanding.

Odd & Even
Year 2 (Spr B1)
- Odd and Even numbers

Scaling
Year 3 (Spr B1)
- Scaling

Correspondence
Year 3 (Spr B1)
- How many ways?
Make Equal Groups - Sharing

Notes and Guidance

Children divide by sharing objects into equal groups using one-to-one correspondence. They need to do this using concrete manipulatives in different contexts, then move on to pictorial representations.

Children will be introduced to the ‘÷’ symbol. They will begin to see the link between division and multiplication.

Mathematical Talk

How many do you have to begin with?
How many equal groups are you sharing between?
How many are in each group?
How do you know that you have shared the objects equally?

___ has been shared equally into ___ equal groups.
I have ___ in each group.
___ groups of ___ make ___.

Varied Fluency

Share the 12 cubes equally into the two boxes.

There are ___ cubes altogether.
There are ___ boxes.
There are ___ cubes in each box.

Can you share the 12 cubes equally into 3 boxes?

24 children are put into 4 equal teams.
How many children are in each team?

Can you use manipulatives to represent the children to show how you found your answer?

Ron draws this bar model to divide 20 into 4 equal groups.
How does his model represent this?
He writes $20 \div 4 = 5$

What other number sentences could Ron create using his model?
Jack says,

I can work out $40 \div 2$ easily because I know that 40 is the same as 4 tens.

This is what he does:

$40 \div 2 = 20$

Is it possible to work out $60 \div 3$ in the same way?
Prove it.

Is it possible to work out $60 \div 4$?
What is different about this calculation?

Possible answer:

For $60 \div 4$ the children will need to exchange 2 tens for 20 ones so they can put one 10 and 5 ones into each group.

Alex has 20 sweets and shares them between 5 friends.

Tommy has 20 sweets and shares them between 10 friends.

Whose friends will receive the most sweets?

How do you know?

Alex’s friends get more because Tommy is sharing with more people so they will get fewer sweets each. Alex’s friends will get 4 sweets each whereas Tommy’s friends will only get 2 sweets each.
Children divide by making equal groups. They then count on to find the total number of groups.

They need to do this using concrete manipulatives and pictorially in a variety of contexts.

They need to recognise the link between division, multiplication and repeated addition.

Pencils come in packs of 20
We need to put 5 in each pot. How many pots will we need?

There are ___ pencils altogether. There are ___ pencils in each pot. There are ___ pots.

Mrs Green has 18 sweets. She puts 3 sweets in each bag. How many bags can she fill?

Mo uses a number line to work out how many equal groups of 2 he can make from 12

Use a number line to work out how many equal groups of 5 you can make from 30
Make Equal Groups - Grouping

Reasoning and Problem Solving

You have 30 counters. How many different ways can you put them into equal groups?

| 10 groups of 3 |
| 3 groups of 10 |
| 6 groups of 5 |
| 5 groups of 6 |
| 2 groups of 15 |
| 15 groups of 2 |
| 1 group of 30 |
| 30 groups of 1 |

Write down all the possible ways.

Mr. Amir has some counters. He makes 5 equal groups. The amount he started with is greater than 10 but less than 35. How many counters could he have started with? How many will be in each group?

- He could have 30 counters in 5 groups of 6
- 25 counters in 5 groups of 5
- 20 counters in 5 groups of 4
- 15 counters in 5 groups of 3
Divide by 2

Notes and Guidance

Children should be secure with grouping and sharing. They will use this knowledge to help them divide by 2.

They will be secure with representing division as an abstract number sentence using the division and equals symbol.

Children should be able to count in 2s and know their 2 times table.

Mathematical Talk

What do you notice when you group these objects into twos?

Is there a link between dividing by 2 and halving?

What is different about sharing into two groups and grouping in twos?

Can we write a multiplication sentence as well as a division sentence? What do you notice?

Varied Fluency

Complete the stem sentences.

I have ___ cubes altogether. There are ___ in each group. There are ___ groups.

Group the socks into pairs.

Complete the number sentences.

Mo and Tommy have 12 sweets between them. They share them equally. How many sweets does each child get?

There are ___ sweets altogether. There are ___ groups. There are ___ in each group.

Complete the bar model and write a calculation to match.
Divide by 2

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>I have 24p. I divide it equally between 2 friends. How much will they get each?</th>
<th>The calculation is the same in both. In the first question we are sharing, whereas in the second question we are grouping.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I have 24p in 2p coins. How many 2p coins do I have?</td>
<td>Ron has shared some grapes equally between two friends.</td>
</tr>
<tr>
<td>Consider the two questions above. What is the same and what is different?</td>
<td>Each friend receives fewer than 50 grapes.</td>
</tr>
</tbody>
</table>

Possible answer:

He must have started with an even number of grapes.

He could have started with 40 grapes.

He can't have started with 100 grapes.

<table>
<thead>
<tr>
<th>Tommy and Annie have some counters. Tommy shares his counters into 2 equal groups. He has 15 in each group. Annie groups her counters in twos. She has 19 groups. Who has more counters and by how many? How did you work it out?</th>
<th>Tommy has 30 counters. Annie has 38 counters. Annie has 8 more. Children could have compared 15 and 19 and realised they could have done 2×4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ron’s friends</td>
<td>Complete the sentences to describe the number of grapes Ron started with.</td>
</tr>
<tr>
<td></td>
<td>He must have started with…</td>
</tr>
<tr>
<td></td>
<td>He could have started with…</td>
</tr>
<tr>
<td></td>
<td>He can’t have started with…</td>
</tr>
</tbody>
</table>
During this step, children focus on efficient strategies and whether they should use grouping or sharing depending on the context of the question.

They use their knowledge of the five times table to help them divide by 5.

They will continue to see the = sign both before and after the calculation.

How can we represent the problem using objects/images?

How does knowing your 5 times table help when dividing by 5?

Circle all the multiples of 5 on a 100 square. What do you notice about the numbers? Can you explain the pattern? How does this help you to divide these numbers?

When would we count in 5s?

Take 30 cubes. How many towers of 5 can you make? You can make ___ towers of 5. ___ towers of 5 is the same as 30. 30 is the same as ___ towers of 5.

40 pencils are shared between 5 children.

How many pencils does each child get?

Group the 1p coins into 5s. How many 5p coins do we need to make the same amount of money? Draw coins and complete the missing information.

• ___ lots of 5p = 20 one pence coins
• ___ lots of 5p = 20p
• 20p = ___ × 5p
• 20p ÷ 5 = ___
Divide by 5

Reasoning and Problem Solving

A party bag contains 5 sweets.
A jar contains 5 party bags.

Ron has 75 sweets.

How many party bags will he need?

How many jars will he need?

| 15 party bags.
| 3 jars. |
|---|---|

<table>
<thead>
<tr>
<th>Use the number cards to make multiplication and division sentences.</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many can you make?</td>
</tr>
</tbody>
</table>

| 4 \times 5 = 20
| 5 \times 4 = 20
| 20 \div 4 = 5
| 20 \div 5 = 4
| 5 \times 2 = 10
| 2 \times 5 = 10
| 10 \div 2 = 5
| 10 \div 5 = 2
| 20 \div 2 = 10
| 20 \div 10 = 2
| 2 \times 10 = 20
| 10 \times 2 = 20 |

| 2
| 20
| 5 |
|---|---|---|
| 10
| 4 |

© White Rose Maths 2019
Children should already be able to multiply by 10 and recognise multiples of 10. They will need to use both grouping and sharing to divide by 10 depending on the context of the problem.

Children start to see that grouping and counting in 10s is more efficient than sharing into 10 equal groups.

What can we use to represent the problem?

How does knowing your 10 times table help you to divide by 10?

Circle all the multiples of 10 on a hundred square. What do you notice? Can you explain the pattern?

How many groups of 10 are there in ___?

Varied Fluency

Apples can be sold in packs of 10
How many packs can be made below?

When 30 apples are sold in packs of 10, ___ packs of apples can be made.
Can you show this in a bar model?
Label and explain what each part represents.

I have 70p in my pocket made up of 10p coins. How many coins do I have? Draw a picture to prove your answer.

Fill in the missing numbers.

• $70 \div 10 = ___$
• $6 \text{ tens} \div 1 \text{ ten} = ___$
• $5 = ___ \div 10$
• There are ___ tens in 40
Mrs Owen has some sweets.
She shares them equally between 10 tables.
How many sweets could each table have?
Find as many ways as you can.
What do you notice about your answers?

True or false?
Dividing by 10 is the same as dividing by 5 then dividing by 2

True

Cakes are sold in boxes of 10
Jack and Alex are trying to pack these cakes into boxes.

Jack says,
There are 5 groups of 10

Alex says,
There are 6 groups of 10

Who is correct? Explain how you know.

Alex is correct because there are 60 cakes and 60 divided by 10 is 6

Jack has incorrectly grouped the cakes, he might have counted the rows wrong. He hasn’t put them in 10s. He incorrectly assumed there were 10 in each row.

The tens digit is the same as the answer.
Divide 2-digits by 1-digit (1)

Notes and Guidance

Children divide 2-digit numbers by a 1-digit number by partitioning into tens and ones and sharing into equal groups.

They divide numbers that do not involve exchange or remainders.

It is important that children divide the tens first and then the ones.

Mathematical Talk

How can we partition the number?
How many tens are there?
How many ones are there?
What could we use to represent this number?
How many equal groups do I need?

How many rows will my place value chart have?
How does this link to the number I am dividing by?

Varied Fluency

Ron uses place value counters to solve $84 \div 2$

Eva uses a place value grid and part-whole model to solve $66 \div 3$

Use Ron’s method to calculate:

$84 \div 4$ $66 \div 2$ $66 \div 3$

Use Eva’s method to calculate:

$69 \div 3$ $96 \div 3$ $86 \div 2$
Divide 2-digits by 1-digit (1)

Reasoning and Problem Solving

Teddy answers the question $44 \div 4$ using place value counters.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Is he correct? Explain your reasoning.

Teddy is incorrect. He has divided 44 by 2 instead of by 4.

Dora thinks that 88 sweets can be shared equally between eight people.

Is she correct?

Dora is correct because 88 divided by 8 is equal to 11.

Alex uses place value counters to help her calculate $63 \div 3$.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

She gets an answer of 12. Is she correct?

Alex is incorrect because she has not placed counters in the correct columns.

It should look like this:

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

The correct answer is 21.
Divide 2-digits by 1-digit (2)

Notes and Guidance

Children divide 2-digit numbers by a 1-digit number by partitioning into tens and ones and sharing into equal groups.

They divide numbers that involve exchanging between the tens and ones. The answers do not have remainders.

Children use their times-tables to partition the number into multiples of the divisor.

Mathematical Talk

Why have we partitioned 42 into 30 and 12 instead of 40 and 2?

What do you notice about the partitioned numbers and the divisor?

Why do we partition 96 in different ways depending on the divisor?

Varied Fluency

Ron uses place value counters to divide 42 into three equal groups.

He shares the tens first and exchanges the remaining ten for ones.

Then he shares the ones.

42 ÷ 3 = 14

Use Ron’s method to calculate 48 ÷ 3, 52 ÷ 4 and 92 ÷ 8

Annie uses a similar method to divide 42 by 3

Use Annie’s method to calculate:

96 ÷ 8 96 ÷ 4 96 ÷ 3 96 ÷ 6

© White Rose Maths 2019
Divide 2-digits by 1-digit (2)

Reasoning and Problem Solving

Compare the statements using <, > or =

- $48 \div 4 \bigcirc 36 \div 3 =$
- $52 \div 4 \bigcirc 42 \div 3 <$
- $60 \div 3 \bigcirc 60 \div 4 >$

Amir partitioned a number to help him divide by 8

Some of his working out has been covered with paint.

What number could Amir have started with?

The answer could be 56 or 96

© White Rose Maths 2019
Divide 2-digits by 1-digit (3)

Notes and Guidance

Children move onto solving division problems with a remainder.
Links are made between division and repeated subtraction, which builds on learning in Year 2.
Children record the remainders as shown in Tommy’s method.
This notation is new to Year 3 so will need a clear explanation.

Mathematical Talk

How do we know 13 divided by 4 will have a remainder?
Can a remainder ever be more than the divisor?
Which is your favourite method?
Which methods are most efficient with larger two digit numbers?

Children record the remainders as shown in Tommy’s method.
This notation is new to Year 3 so will need a clear explanation.

Varied Fluency

- How many squares can you make with 13 lollipop sticks?
 There are ___ lollipop sticks.
 There are ___ groups of 4
 There is ___ lollipop stick remaining.
 $13 \div 4 = ___ \text{ remainder } ___$
 Use this method to see how many triangles you can make with 38 lollipop sticks.

- Tommy uses repeated subtraction to solve $31 \div 4$
 $31 \div 4 = 7 \text{ r } 3$
 Use Tommy’s method to solve 38 divided by 3

- Use place value counters to work out $94 \div 4$
 Did you need to exchange any tens for ones?
 Is there a remainder?
Which calculation is the odd one out? Explain your thinking.

- 64 ÷ 8
- 77 ÷ 4
- 49 ÷ 6
- 65 ÷ 3

64 ÷ 8 could be the odd one out as it is the only calculation without a remainder.

Make sure other answers are considered such as 65 ÷ 3 because it is the only one being divided by an odd number.

Jack has 15 stickers.

He sorts his stickers into equal groups but has some stickers remaining. How many stickers could be in each group and how many stickers would be remaining?

Dora and Eva are planting bulbs. They have 76 bulbs altogether.

Dora plants her bulbs in rows of 8 and has 4 left over. Eva plants her bulbs in rows of 10 and has 2 left over.

How many bulbs do they each have?

There are many solutions, encourage a systematic approach. e.g. 2 groups of 7, remainder 1
3 groups of 4, remainder 3
2 groups of 6, remainder 3

Dora has 44 bulbs. Eva has 32 bulbs.
Building on from Year 1, children should be able to recognise odd and even numbers.

They will use concrete manipulatives to explore odd and even numbers and the structure of these.

Can you sort these objects (number pieces, ten frames, cubes, pictures etc) into an odd set and an even set?

What makes these odd/even?

How do you find out if ___ is an odd or even number?

Can you find all the odd and even numbers on a 100 square? What do you notice?

Use counters to make each number and share them into two equal groups. How does this help you decide whether a number is odd or even? Show this in the table.

<table>
<thead>
<tr>
<th></th>
<th>odd</th>
<th>even</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Which number pieces are odd? Explain why.

Find or draw other odd and even pieces. What do you notice?

Spot the mistakes:

<table>
<thead>
<tr>
<th></th>
<th>odd</th>
<th>even</th>
</tr>
</thead>
<tbody>
<tr>
<td>nine</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eight</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Can you make your own odd and even sets?
Odd & Even Numbers

Reasoning and Problem Solving

True or false?

12 is an odd number.

Prove your answer using concrete, pictorial and abstract representations. Explain each approach.

Tommy says that when he adds two odd numbers together, his total will be even.

Is he correct? Convince me.

What else can you find out?

Children can use concrete or pictorial methods to show 12 is divisible by 2 and therefore it’s false.

Tommy is correct because two odd numbers will always make an even total. Children can use any manipulatives to show this.

Whitney says,

I have added two one-digit numbers. My answer divides into 2 equal groups.

What could Whitney’s numbers be?

Is this the only possible answer?

Which numbers would not be possible?

Explain your answers.

Any two even one digit numbers or any two odd one digit numbers will give an even total. E.g. 1 + 3 = 4 2 + 4 = 6

However, an odd number added to an even number will give an odd total so Whitney could not have this combination.
It is important that children are exposed to problems involving scaling from an early age. Children should be able to answer questions that use the vocabulary “times as many”. Bar models are particularly useful here to help children visualise the concept. Examples and non-examples should be used to ensure depth of understanding.

Mathematical Talk

Why might someone draw the first bar model? What have they misunderstood?

What is the value of Amir’s counters? How do you know?

How many adults are at the concert? How will you work out the total?

Varied Fluency

- In a playground there are 3 times as many girls as boys.

 - boys
 - girls

 Which bar model represents the number of boys and girls? Explain your choice.

- Draw a bar model to represent this situation.

 In a car park there are 5 times as many blue cars as red cars.

 - Eva has these counters
 - Amir has 4 times as many counters. How many counters does Amir have?

 - There are 35 children at a concert. 3 times as many adults are at the concert. How many people are at the concert in total?
Dora says Mo's tower is 3 times taller than her tower. Mo says his tower is 12 times taller than Dora's tower. Who do you agree with? Explain why?

I agree with Dora. Her tower is 4 cubes tall. Mo's tower is 12 cubes tall. 12 is 3 times as big as 4. Mo has just counted his cubes and not compared them to Dora's tower.

In a playground there are 3 times as many girls as boys. There are 30 girls. Label and complete the bar model to help you work out how many boys there are in the playground.

A box contains some counters. There are twice as many green counters as pink counters. There are 18 counters in total. How many pink counters are there?

There are 10 boys in the playground.

There are 6 pink counters.
How Many Ways?

Notes and Guidance

Children list systematically the possible combinations resulting from two groups of objects. Encourage the use of practical equipment and ensure that children take a systematic approach to each problem.

Children should be encouraged to calculate the total number of ways without listing all the possibilities. e.g. Each T-shirt can be matched with 4 pairs of trousers so altogether \(3 \times 4 = 12\) outfits.

Mathematical Talk

What are the names of the shapes on the shape cards?
How do you know you have found all of the ways?
Would making a table help?

Without listing, can you tell me how many possibilities there would be if there are 5 different shape cards and 4 different number cards?

Varied Fluency

Jack has 3 T-shirts and 4 pairs of trousers. Complete the table to show how many different outfits he can make.

<table>
<thead>
<tr>
<th>T-shirt</th>
<th>Trousers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>Blue</td>
<td>Dark blue</td>
</tr>
<tr>
<td>Blue</td>
<td>Orange</td>
</tr>
<tr>
<td>Blue</td>
<td>Green</td>
</tr>
</tbody>
</table>

Alex has 4 shape cards and 3 number cards.

She chooses a shape card and a number card. List all the possible ways she could do this.
Eva chooses a snack and a drink.

What could she have chosen?
How many different possibilities are there?

___ × ___ = ___

There are ____ possibilities.

How many of the ways contain an apple?

3 ways contain an apple.

Jack has some jumpers and pairs of trousers. He can make 15 different outfits. How many jumpers could he have and how many pairs of trousers could he have?

He could have:
1 jumper and 15 pairs of trousers.
3 jumpers and 5 pairs of trousers.
15 jumpers and 1 pair of trousers.
5 jumpers and 3 pairs of trousers.