How to use the mixed-age SOL

In this document, you will find suggestions of how you may structure a progression in learning for a mixed-age class.

Firstly, we have created a yearly overview.

<table>
<thead>
<tr>
<th>Term</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
<th>Week 8</th>
<th>Week 9</th>
<th>Week 10</th>
<th>Week 11</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td>Number: Place Value Y1 - Numbers to 20 Y2 - Numbers to 100</td>
<td>Number: Addition and Subtraction Year 1: Numbers within 20 (including recognising money) Year 2: Numbers within 100 (including money)</td>
<td>Number: Place Value to 50 and Multiplication Year 2: Multiplication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Number: Year 1 Division & consolidation Year 2: Division</td>
<td>Year 1: Place Value to 100</td>
<td>Year 1: Shape and Consolidation Year 2: Properties of Shape</td>
<td>Year 1: Fractions and Consolidation Year 2: Fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>Geometry: Position and Place Measurement: Time</td>
<td>Year 1: Place Value recap</td>
<td>Measurement: Year 1: Weight and Volume Year 2: Mass, Capacity and Temperature</td>
<td>Year 1: Four Operations recap Year 2: Consolidation and Investigations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each term has 12 weeks of learning. We are aware that some terms are longer and shorter than others, so teachers may adapt the overview to fit their term dates. The overview shows how the content has been matched up over the year to support teachers in teaching similar concepts to both year groups. Where this is not possible, it is clearly indicated on the overview with 2 separate blocks.

For each block of learning, we have grouped the small steps into themes that have similar content. Within these themes, we list the corresponding small steps from one or both year groups. Teachers can then use the single-age schemes to access the guidance on each small step listed within each theme.

The themes are organised into common content (above the line) and year specific content (below the line). Moving from left to right, the arrows on the line suggest the order to teach the themes.
How to use the mixed-age SOL

Here is an example of one of the themes from the Year 1/2 mixed-age guidance.

<table>
<thead>
<tr>
<th>Subtraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1 (Aut B2, Spr B1)</td>
</tr>
<tr>
<td>• How many left? (1)</td>
</tr>
<tr>
<td>• How many left? (2)</td>
</tr>
<tr>
<td>• Counting back</td>
</tr>
<tr>
<td>• Subtraction - not crossing 10</td>
</tr>
<tr>
<td>• Subtraction - crossing 10 (1)</td>
</tr>
<tr>
<td>• Subtraction - crossing 10 (2)</td>
</tr>
<tr>
<td>Year 2 (Aut B2, B3)</td>
</tr>
<tr>
<td>• Subtract 1-digit from 2-digits</td>
</tr>
<tr>
<td>• Subtract with 2-digits (1)</td>
</tr>
<tr>
<td>• Subtract with 2-digits (2)</td>
</tr>
<tr>
<td>• Find change - money</td>
</tr>
</tbody>
</table>

In order to create a more coherent journey for mixed-age classes, we have re-ordered some of the single-age steps and combined some blocks of learning e.g. Money is covered within Addition and Subtraction.

The bullet points are the names of the small steps from the single-age SOL. We have referenced where the steps are from at the top of each theme e.g. Aut B2 means Autumn term, Block 2. Teachers will need to access both of the single-age SOLs from our website together with this mixed-age guidance in order to plan their learning.

Points to consider

• Use the mixed-age schemes to see where similar skills from both year groups can be taught together. Learning can then be differentiated through the questions on the single-age small steps so both year groups are focusing on their year group content.

• When there is year group specific content, consider teaching in split inputs to classes. This will depend on support in class and may need to be done through focus groups.

• On each of the block overview pages, we have described the key learning in each block and have given suggestions as to how the themes could be approached for each year group.

• We are fully aware that every class is different and the logistics of mixed-age classes can be tricky. We hope that our mixed-age SOL can help teachers to start to draw learning together.
<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
<th>Week 8</th>
<th>Week 9</th>
<th>Week 10</th>
<th>Week 11</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td></td>
</tr>
<tr>
<td>Number: Place Value</td>
<td></td>
<td></td>
<td>Number: Addition and Subtraction</td>
<td></td>
<td></td>
<td>Number: Subtraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1: Numbers to 20</td>
<td></td>
<td></td>
<td>Year 1: Numbers within 20 (including recognising money)</td>
<td></td>
<td></td>
<td>Year 1: Numbers within 100 (including money)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2: Numbers to 100</td>
<td></td>
<td></td>
<td>Year 2: Numbers within 100 (including money)</td>
<td></td>
<td></td>
<td>Year 2: Numbers within 100 (including money)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Year 1: Place Value to 100 & consolidation</td>
<td></td>
<td></td>
<td>Year 1: Place Value to 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Year 1: Division</td>
<td></td>
<td></td>
<td>Year 2: Division</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Year 2: Statistics</td>
<td></td>
<td></td>
<td>Year 2: Statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Year 1: Fractions and Consolidation</td>
<td></td>
<td></td>
<td>Year 2: Fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Year 1: Fractions and Consolidation</td>
<td></td>
<td></td>
<td>Year 2: Fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Year 2: Fractions</td>
<td></td>
<td></td>
<td>Year 2: Fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Geometry: Year 1: Shape and Consolidation</td>
<td></td>
<td></td>
<td>Geometry: Year 1: Shape and Consolidation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Year 2: Properties of Shape</td>
<td></td>
<td></td>
<td>Year 2: Properties of Shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Year 1: Four Operations recap</td>
<td></td>
<td></td>
<td>Year 1: Four Operations recap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Year 2: Consolidation and Investigations</td>
<td></td>
<td></td>
<td>Year 2: Consolidation and Investigations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spring

Number: Year 1: Division & consolidation
Year 2: Division

Measurement: Length and Height

Geometry: Year 1: Shape and Consolidation
Year 2: Properties of Shape

Summer

Geometry: Position and Direction

Measurement: Time

Year 1: Place Value recap
Year 1: Weight and Volume

Year 2: Problem solving
Year 2: Mass, Capacity and Temperature

Year 2: Consolidation and Investigations

Consolidation
In this section, content from single-age blocks are matched together to show teachers where there are clear links across the year groups.

Teachers may decide to teach the lower year’s content to the whole class before moving the higher year on to their age-related expectations.

The lower year group is not expected to cover the higher year group’s content as they should focus on their own age-related expectations.

In this section, content that is discrete to one year group is outlined. Teachers may need to consider a split input with lessons or working with children in focus groups to ensure they have full coverage of their year’s curriculum. Guidance is given on each page to support the planning of each block.

The themes should be taught in order from left to right.
Division

Common Content

Building on their understanding of equal groups in multiplication, children link their learning to the inverse operation of division.

In Year 1, children should focus on using concrete and pictorial representations to solve division problems.

In Year 2, children are introduced to the division symbol (÷) and use this to write number sentences. Children recall division facts from the 2, 5 and 10 times tables and use their understanding of dividing by 2 to find odd and even numbers.

Year Specific

Sharing
Year 1 (Sum B1)
• Make equal groups - sharing
Year 2 (Spr B1)
• Make equal groups - sharing

Grouping
Year 1 (Sum B1)
• Make equal groups - grouping
Year 2 (Spr B1)
• Make equal groups - grouping

Divide by 2
Year 2 (Spr B1)
• Divide by 2
• Odd and Even numbers

Divide by 5 and 10
Year 2 (Spr B1)
• Divide by 5
• Divide by 10

© White Rose Maths 2019
Block 1 - Division

Theme 1 - Sharing
Children explore sharing as a model of division. They use 1:1 correspondence to share concrete objects into equal groups.

Children also need to be given the opportunity to see when a number of objects cannot be shared equally into equal groups.

Mathematical Talk

How can I share the muffins equally?

How many muffins on this plate? How many on this plate? Are they equal? If I had 9 muffins what would happen?

How can I share the objects equally? How many equal groups am I sharing the objects into? Are the groups equal? Are there any left over?

Varied Fluency

Share the muffins equally between the two plates. Complete the sentence.

___ cakes shared equally between 2 is ___

Collect 20 cubes. Use hoops to represent your friends. Can you share the cubes between 5 friends?

20 shared between 5 equals ___

Can you share the cubes between 2 friends?

20 shared between 2 equals ___

Can you share the cubes between 10 friends?

20 shared between 10 equals ___

Tim has 16 bananas. He shares them equally between two boxes. How many bananas are in each box? Represent and solve the problem.
Dora has 10 biscuits.

She wants to share them equally at her party.

How many people could be at the party?

Possible answers:
- There could be: 10 people
- 5 people
- 2 people
- 1 person (Dora)

There are 10 cakes and 2 boxes.

An equal amount needs to be put into each box.

Possible answer:
Eva is correct. She has shared the cakes equally and put 5 into each box.

Jack
Put them into groups of 2

Eva
Share them into 2 groups.

Who is correct? Explain your answer.
Children divide by sharing objects into equal groups using one-to-one correspondence. They need to do this using concrete manipulatives in different contexts, then move on to pictorial representations.

Children will be introduced to the ‘÷’ symbol. They will begin to see the link between division and multiplication.

Make Equal Groups - Sharing

Variied Fluency

Share the 12 cubes equally into the two boxes.

There are ___ cubes altogether.
There are ___ boxes.
There are ___ cubes in each box.

Can you share the 12 cubes equally into 3 boxes?

24 children are put into 4 equal teams. How many children are in each team?

Can you use manipulatives to represent the children to show how you found your answer?

Ron draws this bar model to divide 20 into 4 equal groups. How does his model represent this? He writes \(20 \div 4 = 5\)

What other number sentences could Ron create using his model?

Mathematical Talk

How many do you have to begin with?
How many equal groups are you sharing between?
How many are in each group?
How do you know that you have shared the objects equally?

___ has been shared equally into ___ equal groups.
I have ___ in each group.
___ groups of ___ make ___
Jack says,

I can work out $40 \div 2$ easily because I know that 40 is the same as 4 tens.

This is what he does:

$40 \div 2 = 20$

Is it possible to work out $60 \div 3$ in the same way?
Prove it.

Is it possible to work out $60 \div 4$?
What is different about this calculation?

Possible answer:

For $60 \div 4$ the children will need to exchange 2 tens for 20 ones so they can put one 10 and 5 ones into each group.

Alex has 20 sweets and shares them between 5 friends.

Tommy has 20 sweets and shares them between 10 friends.

Whose friends will receive the most sweets?

How do you know?

Alex’s friends get more because Tommy is sharing with more people so they will get fewer sweets each. Alex’s friends will get 4 sweets each whereas Tommy’s friends will only get 2 sweets each.
Block 1 - Division

Theme 2 - Grouping
Make Equal Groups - Grouping

Children start with a given total and make groups of an equal amount. They record their understanding in sentences, not through formal division at this stage.

Children can develop their understanding of equal groups by also being exposed to numbers which do not group equally.

Mathematical Talk

How can you tell if the groups are equal? How can you represent the equal groups? Do all numbers divide into equal groups of 2?

How do you sort the cubes into equal groups?

What would happen if there were 21 cubes?

Have I got equal groups?

How do you know?

Does each group need to be arranged in the same way for it to be equal?

Notes and Guidance

Varied Fluency

How many equal groups of 2 can you make with the mittens?

There are ____ groups of 2 mittens.

If you had 10 mittens, how many equal groups of 2 mittens could you make?

Take 20 cubes. Complete the sentences.

I can make ____ equal groups of 2

I can make ____ equal groups of 5

I can make ____ equal groups of 10

Complete the table. Use equipment to help you.

<table>
<thead>
<tr>
<th>Representation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>There are ____ altogether. There are ____ equal groups of ____</td>
</tr>
<tr>
<td></td>
<td>There are ____ altogether. There are ____ equal groups of ____</td>
</tr>
<tr>
<td></td>
<td>15 has been sorted into 3 equal groups of 5</td>
</tr>
<tr>
<td></td>
<td>____ has been sorted into ____ equal groups of ____</td>
</tr>
<tr>
<td>Tommy and Jack each have the same number of sweets.</td>
<td>Jack has 10 sweets in his group.</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
</tr>
</tbody>
</table>
| Tommy has 5 equal groups of 2
Jack has 1 equal group.
How many sweets are in Jack’s group? | I am thinking of a number between 20 and 30
What must my number be?
What happens when I try to make groups of 2 with it?
What happens when I try to make groups of 10 with it? |
| Answer: 25
Children can use practical equipment to solve this and discover what happens.
If you make equal groups of 2 with it there will be 1 left over.
If you make equal groups of 10 with it there will be 5 left over. |
Children divide by making equal groups. They then count on to find the total number of groups.

They need to do this using concrete manipulatives and pictorially in a variety of contexts.

They need to recognise the link between division, multiplication and repeated addition.

How many do you have to begin with? How many are in each group? How many groups can you make?

How long should your number line be? What will you count up in?

____ groups of ____ make ____

Varied Fluency

Pencils come in packs of 20
We need to put 5 in each pot. How many pots will we need?

There are ___ pencils altogether. There are ___ pencils in each pot. There are ___ pots.

Mrs Green has 18 sweets. She puts 3 sweets in each bag. How many bags can she fill?

18 ÷ ___ = 3

Moses uses a number line to work out how many equal groups of 2 he can make from 12

Use a number line to work out how many equal groups of 5 you can make from 30

18 ÷ 3 = ___
You have 30 counters.
How many different ways can you put them into equal groups?
Write down all the possible ways.

10 groups of 3
3 groups of 10
6 groups of 5
5 groups of 6
2 groups of 15
15 groups of 2
1 group of 30
30 groups of 1

Amir has some counters.
He makes 5 equal groups.
The amount he started with is greater than 10 but less than 35
How many counters could he have started with?
How many will be in each group?

He could have 30 counters in 5 groups of 6
25 counters in 5 groups of 5
20 counters in 5 groups of 4
15 counters in 5 groups of 3
Block 1 - Division

Theme 3 - Divide by 2
Children should be secure with grouping and sharing. They will use this knowledge to help them divide by 2.

They will be secure with representing division as an abstract number sentence using the division and equals symbol.

Children should be able to count in 2s and know their 2 times table.

What do you notice when you group these objects into twos?

Is there a link between dividing by 2 and halving?

What is different about sharing into two groups and grouping in twos?

Can we write a multiplication sentence as well as a division sentence? What do you notice?

Complete the stem sentences.
I have ___ cubes altogether. There are ___ in each group. There are ___ groups.

Group the socks into pairs.

Complete the number sentences.
Mo and Tommy have 12 sweets between them. They share them equally. How many sweets does each child get?

There are ___ sweets altogether. There are ___ groups. There are ___ in each group.

Complete the bar model and write a calculation to match.
Divide by 2

Reasoning and Problem Solving

I have 24p. I divide it equally between 2 friends. How much will they get each?

I have 24p in 2p coins. How many 2p coins do I have?

Consider the two questions above. What is the same and what is different?

Tommy and Annie have some counters.
Tommy shares his counters into 2 equal groups. He has 15 in each group.
Annie groups her counters in twos. She has 19 groups.
Who has more counters and by how many? How did you work it out?

The calculation is the same in both. In the first question we are sharing, whereas in the second question we are grouping.

Ron has shared some grapes equally between two friends.

Each friend receives fewer than 50 grapes.

Complete the sentences to describe the number of grapes Ron started with.

He must have started with...
He could have started with...
He can't have started with...

Possible answer:
He must have started with an even number of grapes.
He could have started with 40 grapes.
He can't have started with 100 grapes.

Ron's friends

Ron has shared some grapes equally between two friends.

Possible answer:
He must have started with an even number of grapes.
He could have started with 40 grapes.
He can't have started with 100 grapes.
Building on from Year 1, children should be able to recognise odd and even numbers.

They will use concrete manipulatives to explore odd and even numbers and the structure of these.

Can you sort these objects (number pieces, ten frames, cubes, pictures etc) into an odd set and an even set?

What makes these odd/even?

How do you find out if ___ is an odd or even number?

Can you find all the odd and even numbers on a 100 square? What do you notice?

Use counters to make each number and share them into two equal groups. How does this help you decide whether a number is odd or even? Show this in the table.

Can you see any patterns?

Which number pieces are odd? Explain why.

Find or draw other odd and even pieces. What do you notice?

Spot the mistakes:

<table>
<thead>
<tr>
<th>odd</th>
<th>even</th>
</tr>
</thead>
<tbody>
<tr>
<td>nine</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>eight</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Can you make your own odd and even sets?
True or false?

12 is an odd number.

Prove your answer using concrete, pictorial and abstract representations. Explain each approach.

<table>
<thead>
<tr>
<th>Tommy says that when he adds two odd numbers together, his total will be even.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is he correct? Convince me.</td>
</tr>
<tr>
<td>What else can you find out?</td>
</tr>
</tbody>
</table>

Children can use concrete or pictorial methods to show 12 is divisible by 2 and therefore it's false.

| Tommy is correct because two odd numbers will always make an even total. Children can use any manipulatives to show this. |

Whitney says,

I have added two one-digit numbers. My answer divides into 2 equal groups.

<table>
<thead>
<tr>
<th>What could Whitney's numbers be?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is this the only possible answer?</td>
</tr>
<tr>
<td>Which numbers would not be possible?</td>
</tr>
<tr>
<td>Explain your answers.</td>
</tr>
</tbody>
</table>

Any two even one digit numbers or any two odd one digit numbers will give an even total. E.g. $1 + 3 = 4$
$2 + 4 = 6$

However, an odd number added to an even number will give an odd total so Whitney could not have this combination.
Block 1 - Division

Theme 4 - Divide by 5 & 10
Divide by 5

Notes and Guidance

During this step, children focus on efficient strategies and whether they should use grouping or sharing depending on the context of the question.

They use their knowledge of the five times table to help them divide by 5.

They will continue to see the = sign both before and after the calculation.

Mathematical Talk

How can we represent the problem using objects/images?

How does knowing your 5 times table help when dividing by 5?

Circle all the multiples of 5 on a 100 square. What do you notice about the numbers? Can you explain the pattern? How does this help you to divide these numbers?

When would we count in 5s?

Varied Fluency

- Take 30 cubes. How many towers of 5 can you make? You can make ___ towers of 5. ___ towers of 5 is the same as 30. 30 is the same as ___ towers of 5

- 40 pencils are shared between 5 children.

- 20p ÷ 5 = ___

- How many pencils does each child get?

- Group the 1p coins into 5s. How many 5p coins do we need to make the same amount of money?

Draw coins and complete the missing information.

- ___ lots of 5p = 20 one pence coins
- ___ lots of 5p = 20p
- 20p = ___ × 5p
- 20p ÷ 5 = ___
Divide by 5

A party bag contains 5 sweets.
A jar contains 5 party bags.

Ron has 75 sweets.

How many party bags will he need?

How many jars will he need?

15 party bags.
3 jars.

Use the number cards to make multiplication and division sentences.

How many can you make?

4 × 5 = 20
5 × 4 = 20
20 ÷ 4 = 5
20 ÷ 5 = 4
5 × 2 = 10
2 × 5 = 10
10 ÷ 2 = 5
10 ÷ 5 = 2
20 ÷ 2 = 10
20 ÷ 10 = 2
2 × 10 = 20
10 × 2 = 20
Divide by 10

Notes and Guidance

Children should already be able to multiply by 10 and recognise multiples of 10. They will need to use both grouping and sharing to divide by 10 depending on the context of the problem.

Children start to see that grouping and counting in 10s is more efficient than sharing into 10 equal groups.

Mathematical Talk

What can we use to represent the problem?

How does knowing your 10 times table help you to divide by 10?

Circle all the multiples of 10 on a hundred square. What do you notice? Can you explain the pattern?

How many groups of 10 are there in ___?

Varied Fluency

Apples can be sold in packs of 10
How many packs can be made below?

![Apples](image)

\[\square \div \square = \square \]

When 30 apples are sold in packs of 10, ___ packs of apples can be made.

Can you show this in a bar model?

Label and explain what each part represents.

I have 70p in my pocket made up of 10p coins. How many coins do I have? Draw a picture to prove your answer.

Fill in the missing numbers.

- \(70 \div 10 = ___\)
- \(6 \text{ tens} \div 1 \text{ ten} = ___\)
- \(5 = ___ \div 10\)
- There are ___ tens in 40
Mrs Owen has some sweets.

She shares them equally between 10 tables.

How many sweets could each table have?

Find as many ways as you can.

What do you notice about your answers?

True or false?

Dividing by 10 is the same as dividing by 5 then dividing by 2

<table>
<thead>
<tr>
<th>They could have:</th>
<th>True or false?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10 \div 10 = 1$</td>
<td>True</td>
</tr>
<tr>
<td>$20 \div 10 = 2$</td>
<td></td>
</tr>
<tr>
<td>$30 \div 10 = 3$</td>
<td></td>
</tr>
<tr>
<td>$40 \div 10 = 4$</td>
<td></td>
</tr>
<tr>
<td>$50 \div 10 = 5$</td>
<td></td>
</tr>
<tr>
<td>etc</td>
<td></td>
</tr>
</tbody>
</table>

Cakes are sold in boxes of 10

Jack and Alex are trying to pack these cakes into boxes.

Jack says,

There are 5 groups of 10

Alex says,

There are 6 groups of 10

Who is correct? Explain how you know.

Alex is correct because there are 60 cakes and 60 divided by 10 is 6

Jack has incorrectly grouped the cakes, he might have counted the rows wrong. He hasn’t put them in 10s. He incorrectly assumed there were 10 in each row.

True

There are 5 groups of 10

There are 6 groups of 10

Who is correct? Explain how you know.